
Monitor Client Library Programmer’s Guide

Adaptive Server® Enterprise
15.0

DOCUMENT ID: DC32865-01-1500-02

LAST REVISED: October 2005

Copyright © 1987-2005 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Warehouse, Afaria, Answers Anywhere, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, AvantGo Mobile Delivery, AvantGo Mobile
Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon
Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, DirectConnect,
DirectConnect Anywhere, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, M2M Anywhere, Mach Desktop, Mail
Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, mFolio, Mirror Activator, MySupport, Net-
Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL
Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server,
Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PocketBuilder, Pocket
PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner,
PowerDimensions, PowerDynamo, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft
Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, RemoteWare,
RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report-
Execute, Report Workbench, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, S-Designor, SDF, Search Anywhere,
Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SOA Anywhere, SQL
Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL
Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL
Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase Client/
Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase IQ, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle,
Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist, SybFlex, SyBooks, System 10, System
11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Translation Toolkit, UltraLite, UltraLite.NET,
UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, VisualWriter, VQL, WarehouseArchitect, Warehouse
Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB,
Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, and XP Server are trademarks of
Sybase, Inc. 06/05

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents
About This Book ... xi

CHAPTER 1 Getting Started with Monitor Client Library.................................. 1
Overview .. 1
What is Adaptive Server Enterprise Monitor? 1

Adaptive Server Enterprise Monitor components...................... 2
Adaptive Server Enterprise Monitor architecture....................... 2

Writing a basic Monitor Client Library program 4
Application logic flow ... 5
Step 1: Defining error handling.. 5
Step 2: Connecting to a server.. 6
Step 3: creating a view .. 7
Step 4: Creating filters ... 10
Step 5: Setting alarms ... 11
Step 6: Requesting performance data and process results 11
Step 7: closing and deallocating connections 12
Playing back recorded data ... 13

A sample Monitor Client Library program....................................... 14
Example program .. 14

CHAPTER 2 Data Items and Statistical Types ... 43
Overview .. 43
Result and key data items.. 43
Data items and views ... 44

Rows with no data versus no rows in views 45
Server-level status... 45
Combining data items.. 45
Result and key combinations .. 46
Connection summaries.. 46
Current statement and application name data items............... 46

Data item definitions... 46
Deciphering the names of data items...................................... 47
SMC_NAME_ACT_STP_DB_ID ... 49
Programmer’s Guide iii

Contents
SMC_NAME_ACT_STP_DB_NAME 49
SMC_NAME_ACT_STP_ID .. 50
SMC_NAME_ACT_STP_NAME ... 51
SMC_NAME_ACT_STP_OWNER_NAME.............................. 51
SMC_NAME_APPLICATION_NAME...................................... 52
SMC_NAME_APP_EXECUTION_CLASS.............................. 52
SMC_NAME_BLOCKING_SPID ... 53
SMC_NAME_CONNECT_TIME.. 54
SMC_NAME_CPU_BUSY_PCT ... 54
SMC_NAME_CPU_PCT ... 54
SMC_NAME_CPU_TIME.. 55
SMC_NAME_CPU_YIELD .. 56
SMC_NAME_CUR_APP_NAME... 56
SMC_NAME_CUR_ENGINE .. 56
SMC_NAME_CUR_EXECUTION_CLASS 57
SMC_NAME_CUR_PROC_STATE .. 57
SMC_NAME_CUR_STMT_ACT_STP_DB_ID........................ 58
SMC_NAME_CUR_STMT_ACT_STP_DB_NAME................. 59
SMC_NAME_CUR_STMT_ACT_STP_ID............................... 59
SMC_NAME_CUR_STMT_ACT_STP_NAME........................ 60
SMC_NAME_CUR_STMT_ACT_STP_OWNER_NAME 60
SMC_NAME_CUR_STMT_ACT_STP_TEXT......................... 61
SMC_NAME_CUR_STMT_BATCH_ID................................... 61
SMC_NAME_CUR_STMT_BATCH_TEXT............................. 62
SMC_NAME_CUR_STMT_BATCH_TEXT_ENABLED 62
SMC_NAME_CUR_STMT_CONTEXT_ID.............................. 63
SMC_NAME_CUR_STMT_CPU_TIME 63
SMC_NAME_CUR_STMT_ELAPSED_TIME 64
SMC_NAME_CUR_STMT_LINE_NUM 64
SMC_NAME_CUR_STMT_LOCKS_GRANTED_IMMED....... 65
SMC_NAME_CUR_STMT_LOCKS_GRANTED_WAITED..... 65
SMC_NAME_CUR_STMT_LOCKS_NOT_GRANTED........... 65
SMC_NAME_CUR_STMT_NUM .. 66
SMC_NAME_CUR_STMT_PAGE_IO..................................... 66
SMC_NAME_CUR_STMT_PAGE_LOGICAL_READ............. 67
SMC_NAME_CUR_STMT_PAGE_PHYSICAL_READ........... 67
SMC_NAME_CUR_STMT_PAGE_WRITE............................. 68
SMC_NAME_CUR_STMT_QUERY_PLAN_TEXT................. 68
SMC_NAME_CUR_STMT_START_TIME.............................. 69
SMC_NAME_CUR_STMT_TEXT_BYTE_OFFSET................ 69
SMC_NAME_DATA_CACHE_CONTENTION........................ 70
SMC_NAME_DATA_CACHE_EFFICIENCY 70
SMC_NAME_DATA_CACHE_HIT .. 70
SMC_NAME_DATA_CACHE_HIT_PCT................................. 71
iv Monitor Client Library

Contents
SMC_NAME_DATA_CACHE_ID .. 71
SMC_NAME_DATA_CACHE_LARGE_IO_DENIED 72
SMC_NAME_DATA_CACHE_LARGE_IO_PERFORMED..... 73
SMC_NAME_DATA_CACHE_LARGE_IO_REQUESTED 73
SMC_NAME_DATA_CACHE_MISS 74
SMC_NAME_DATA_CACHE_NAME 74
SMC_NAME_DATA_CACHE_PREFETCH_EFFICIENCY 75
SMC_NAME_DATA_CACHE_REUSE 75
SMC_NAME_DATA_CACHE_REUSE_DIRTY....................... 76
SMC_NAME_DATA_CACHE_REF_AND_REUSE................. 76
SMC_NAME_DATA_CACHE_SIZE.. 77
SMC_NAME_DB_ID ... 77
SMC_NAME_DB_NAME... 78
SMC_NAME_DEADLOCK_CNT... 78
SMC_NAME_DEMAND_LOCK... 79
SMC_NAME_DEV_HIT... 79
SMC_NAME_DEV_HIT_PCT.. 79
SMC_NAME_DEV_IO... 80
SMC_NAME_DEV_MISS.. 80
SMC_NAME_DEV_NAME .. 81
SMC_NAME_DEV_READ... 81
SMC_NAME_DEV_WRITE ... 82
SMC_NAME_ELAPSED_TIME... 82
SMC_NAME_ENGINE_NUM .. 83
SMC_NAME_HOST_NAME.. 83
SMC_NAME_KPID.. 84
SMC_NAME_LOCK_CNT... 84
SMC_NAME_LOCK_HIT_PCT ... 85
SMC_NAME_LOCK_RESULT .. 85
SMC_NAME_LOCK_RESULT_SUMMARY............................ 86
SMC_NAME_LOCK_STATUS .. 86
SMC_NAME_LOCK_STATUS_CNT....................................... 87
SMC_NAME_LOCK_TYPE... 88
SMC_NAME_LOCKS_BEING_BLOCKED_CNT 88
SMC_NAME_LOCKS_GRANTED_IMMED 89
SMC_NAME_LOCKS_GRANTED_WAITED 90
SMC_NAME_LOCKS_NOT_GRANTED................................. 90
SMC_NAME_LOG_CONTENTION_PCT 91
SMC_NAME_LOGIN_NAME .. 91
SMC_NAME_MEM_CODE_SIZE ... 92
SMC_NAME_MEM_KERNEL_STRUCT_SIZE....................... 92
SMC_NAME_MEM_PAGE_CACHE_SIZE 93
SMC_NAME_MEM_PROC_BUFFER..................................... 93
SMC_NAME_MEM_PROC_HEADER 93
Programmer’s Guide v

Contents
SMC_NAME_MEM_SERVER_STRUCT_SIZE 94
SMC_NAME_MOST_ACT_DEV_IO 94
SMC_NAME_MOST_ACT_DEV_NAME................................. 95
SMC_NAME_NET_BYTE_IO.. 95
SMC_NAME_NET_BYTES_RCVD... 96
SMC_NAME_NET_BYTES_SENT ... 96
SMC_NAME_NET_DEFAULT_PKT_SIZE 96
SMC_NAME_NET_MAX_PKT_SIZE...................................... 97
SMC_NAME_NET_PKT_SIZE_RCVD.................................... 97
SMC_NAME_NET_PKT_SIZE_SENT 97
SMC_NAME_NET_PKTS_RCVD ... 98
SMC_NAME_NET_PKTS_SENT.. 98
SMC_NAME_NUM_ENGINES.. 99
SMC_NAME_NUM_PROCESSES ... 99
SMC_NAME_OBJ_ID ... 100
SMC_NAME_OBJ_NAME... 101
SMC_NAME_OBJ_TYPE.. 101
SMC_NAME_OWNER_NAME.. 102
SMC_NAME_PAGE_HIT_PCT... 102
SMC_NAME_PAGE_INDEX_LOGICAL_READ 102
SMC_NAME_PAGE_INDEX_PHYSICAL_READ 103
SMC_NAME_PAGE_IO .. 104
SMC_NAME_PAGE_LOGICAL_READ 104
SMC_NAME_PAGE_NUM.. 105
SMC_NAME_PAGE_PHYSICAL_READ 105
SMC_NAME_PAGE_WRITE .. 106
SMC_NAME_PROC_STATE .. 106
SMC_NAME_PROC_STATE_CNT....................................... 108
SMC_NAME_SPID.. 108
SMC_NAME_SQL_SERVER_NAME.................................... 110
SMC_NAME_SQL_SERVER_VERSION.............................. 110
SMC_NAME_STP_CPU_TIME... 110
SMC_NAME_STP_ELAPSED_TIME.................................... 111
SMC_NAME_STP_EXECUTION_CLASS 111
SMC_NAME_STP_HIT_PCT.. 112
SMC_NAME_STP_LINE_NUM... 112
SMC_NAME_STP_LINE_TEXT.. 113
SMC_NAME_STP_LOGICAL_READ 113
SMC_NAME_STP_NUM_TIMES_EXECUTED 113
SMC_NAME_STP_PHYSICAL_READ 114
SMC_NAME_STP_STMT_NUM ... 114
SMC_NAME_THREAD_EXCEEDED_MAX.......................... 115
SMC_NAME_THREAD_EXCEEDED_MAX_PCT 115
SMC_NAME_THREAD_MAX_USED 116
vi Monitor Client Library

Contents
SMC_NAME_TIME_WAITED_ON_LOCK 116
SMC_NAME_TIMESTAMP ... 116
SMC_NAME_TIMESTAMP_DATIM...................................... 117
SMC_NAME_XACT .. 117
SMC_NAME_XACT_DELETE .. 118
SMC_NAME_XACT_DELETE_DEFERRED......................... 118
SMC_NAME_XACT_DELETE_DIRECT 119
SMC_NAME_XACT_INSERT ... 119
SMC_NAME_XACT_INSERT_CLUSTERED 119
SMC_NAME_XACT_INSERT_HEAP 120
SMC_NAME_XACT_SELECT .. 120
SMC_NAME_XACT_UPDATE.. 121
SMC_NAME_XACT_UPDATE_DEFERRED 121
SMC_NAME_XACT_UPDATE_DIRECT 121
SMC_NAME_XACT_UPDATE_EXPENSIVE 122
SMC_NAME_XACT_UPDATE_IN_PLACE 122
SMC_NAME_XACT_UPDATE_NOT_IN_PLACE................. 123

CHAPTER 3 Monitor Client Library Functions... 125
Library functions... 125
Threads .. 126
Error handling... 127
Error handler .. 127
Callback function.. 128
smc_close .. 129
smc_connect_alloc... 131
smc_connect_drop... 132
smc_connect_ex .. 133
smc_connect_props ... 134
smc_create_alarm_ex.. 139
smc_create_filter.. 143
smc_create_playback_session .. 146
smc_create_recording_session ... 152
smc_create_view ... 155
smc_drop_alarm .. 157
smc_drop_filter... 158
smc_drop_view .. 159
smc_get_command_info .. 161
smc_get_dataitem_type ... 163
smc_get_dataitem_value ... 164
smc_get_row_count ... 166
smc_get_version_string ... 167
smc_initiate_playback .. 168
smc_initiate_recording ... 169
Programmer’s Guide vii

Contents
smc_refresh_ex.. 171
smc_terminate_playback ... 172
smc_terminate_recording... 173

CHAPTER 4 Building a Monitor Client Library Application 175
Building on UNIX platforms .. 176

Compiling the application .. 176
Linking the application... 176
Running the application... 177
Building the sample applications ... 177

Building on Windows platforms .. 178
Compiling the application .. 178
Linking the application... 179
Running the application... 179
Building the sample applications ... 180

CHAPTER 5 Monitor Client Library Configuration Instructions 183
Loading Monitor Client Library ... 183

Using InstallShield... 183
Results of the load ... 184
Confirming your login account and permissions 184
Modifying the interfaces file.. 184
Setting up the user environment .. 186

Setting the SYBASE environment variable 186
Overriding the default location of the interfaces file 186

Using Monitor Client Library... 187

APPENDIX A Examples of Views .. 189
Cache performance summary.. 191
Current statement summary... 192
Database object lock status ... 192
Database object page I/O .. 193
Data cache activity for individual caches 194
Data cache statistics for session.. 194
Data cache statistics for sample interval...................................... 195
Device I/O for session .. 195
Device I/O for sample interval .. 196
Device I/O performance summary ... 196
Engine activity .. 197
Lock performance summary... 197
Network activity for session.. 198
Network activity for sample interval.. 198
viii Monitor Client Library

Contents
Network performance summary ... 199
Procedure cache statistics for session... 200
Procedure cache statistics for sample interval............................. 200
Procedure page I/O.. 201
Process activity .. 201
Process database object page I/O ... 202
Process detail for locks .. 203
Process detail page I/O.. 204
Process locks ... 205
Process page I/O ... 205
Process state summary.. 206
Process stored procedure page I/O ... 206
Server performance summary.. 207
Stored procedure activity ... 207
Transaction activity .. 208

APPENDIX B Datatypes and Structures .. 223
Summary of datatypes ... 223
Enum: SMC_ALARM_ACTION_TYPE .. 226
Enum: SMC_CLOSE_TYPE .. 226
Enum: SMC_DATAITEM_NAME ... 226
Enum: SMC_DATAITEM_STATTYPE ... 226
Structure: SMC_DATAITEM_STRUCT.. 227
Enum: SMC_DATAITEM_TYPE .. 227
Enum: SMC_ERR_SEVERITY .. 228
Enum: SMC_FILTER_TYPE .. 228
Enum: SMC_HS_ESTIM_OPT .. 228
Enum: SMC_HS_MISSDATA_OPT ... 229
Enum: SMC_HS_PLAYBACK_OPT .. 229
Enum: SMC_HS_SESS_DELETE_OPT...................................... 229
Enum: SMC_HS_SESS_ERR_OPT .. 229
Enum: SMC_HS_SESS_PROT_LEVEL 230
Enum: SMC_HS_SESS_SCRIPT_OPT....................................... 230
Enum: SMC_HS_TARGET_OPT... 230
Enum: SMC_HS_TARGET_OPT... 231
Enum: SMC_INFO_TYPE.. 231
Enum: SMC_LOCK_RESULT.. 231
Enum: SMC_LOCK_RESULT_SUMMARY 232
Enum: SMC_LOCK_STATUS.. 232
Enum: SMC_LOCK_TYPE... 232
Enum: SMC_OBJ_TYPE ... 233
Enum: SMC_PROC_STATE.. 233
Enum: SMC_PROP_ACTION .. 234
Enum: SMC_PROP_TYPE .. 234
Programmer’s Guide ix

Contents
Enum: SMC_RETURN_CODE .. 234
Enum: SMC_SERVER_MODE .. 236
Enum: SMC_SOURCE .. 236
Union: SMC_VALUE_UNION .. 236

APPENDIX C Backward Compatibility.. 237
Obsolete and replacement functions.. 237
New functions, as Adaptive Server version 11.5.......................... 238
Rules for functions and callbacks compatibility............................ 238

APPENDIX D Troubleshooting Information and Error Messages 241
Troubleshooting ... 241

Confusing messages from Adaptive Server 241
View refreshes fail ... 241
Negative numbers as object IDs ... 241

Error messages.. 242
Communication failure: check if server is running................. 242
Configuration failure: possibly missing interfaces file or bad login

parameters ... 243
Don’t know how to build example.h....................................... 243
error L2029: ‘SMC_CONNECT’ : unresolved external 243
error L2029: ‘SMC_CREATE_VIEW’ : unresolved external .. 243
fatal error C1083: Cannot open include file: ‘cstypes.h’: No such

file or directory .. 244
fatal error C1083: Cannot open include file: ‘mcpublic.h’: No such

file or directory .. 244
LINK: fatal error L4051: smcapi32.lib : cannot find library..... 244

Index ... 245
x Monitor Client Library

Programmer’s Guide xi

About This Book

Sybase® Adaptive Server™ Enterprise Monitor™ Client Library
Programmer’s Guide describes how to write Sybase Adaptive Server
Enterprise Monitor Client Library (Monitor Client Library) applications
that access Sybase Adaptive Server Enterprise performance data.

Audience This guide is for programmers who use Adaptive Server Enterprise
Monitor Server or Adaptive Server Enterprise Monitor Historical Server.

How to use this book When writing a Monitor Client Library application, use this book as a
source of general information on how to construct Monitor Client Library
programs.

• Chapter 1, “Getting Started with Monitor Client Library” explains
how to structure a basic Monitor Client Library program and includes
a simple, complete Monitor Client Library application.

• Chapter 2, “Data Items and Statistical Types” describes data items,
statistical types, and valid data item combinations of data items used
in Monitor Client Library applications to gather performance data.

• Chapter 3, “Monitor Client Library Functions” describes each
function including syntax, parameter values, examples, permissions,
and related functions.

• Chapter 4, “Building a Monitor Client Library Application”
describes how to compile and link a Monitor Client Library program.

• Chapter 5, “Monitor Client Library Configuration Instructions”
explains how to configure Monitor Client Library on UNIX or
Windows NT.

• Appendix A, “Examples of Views” provides examples of valid
views.

• Appendix B, “Datatypes and Structures” summarizes datatypes used
by Monitor Client Library and describes the datatypes that have no
equivalent in C or Open-Client Client Library.

• Appendix C, “Backward Compatibility” lists obsolete functions and
their replacement functions.

xii Monitor Client Library

• Appendix D, “Troubleshooting Information and Error Messages”
explains how to respond to problems that you might have with Monitor
Client Library and lists error messages that may be reported.

Related documents The Sybase® Adaptive Server® Enterprise documentation set consists of the
following:

• The release bulletin for your platform – contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

• The Installation Guide for your platform – describes installation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

• What’s New in Adaptive Server Enterprise? – describes the new features
in Adaptive Server version 15.0, the system changes added to support
those features, and changes that may affect your existing applications.

• ASE Replicator User’s Guide – describes how to use the Adaptive Server
Replicator feature of Adaptive Server to implement basic replication from
a primary server to one or more remote Adaptive Servers.

• Component Integration Services User’s Guide – explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

• The Configuration Guide for your platform – provides instructions for
performing specific configuration tasks for Adaptive Server.

• Full-Text Search Specialty Data Store User’s Guide – describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

• Glossary – defines technical terms used in the Adaptive Server
documentation.

• Historical Server User’s Guide – describes how to use Historical Server to
obtain performance information for SQL Server® and Adaptive Server.

• Java in Adaptive Server Enterprise – describes how to install and use Java
classes as data types, functions, and stored procedures in the Adaptive
Server database.

 About This Book

Programmer’s Guide xiii

• Job Scheduler User's Guide – provides instructions on how to install and
configure, and create and schedule jobs on a local or remote Adaptive
Server using the command line or a graphical user interface (GUI).

• Messaging Service User’s Guide – describes how to useReal Time
Messaging Services to integrate TIBCO Java Message Service and IBM
WebSphere MQ messaging services with all Adaptive Server database
applications.

• Monitor Client Library Programmer’s Guide – describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

• Monitor Server User’s Guide – describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

• Performance and Tuning Guide – is a series of four books that explains
how to tune Adaptive Server for maximum performance:

• Basics – the basics for understanding and investigating performance
questions in Adaptive Server.

• Locking – describes how the various locking schemas can be used for
improving performance in Adaptive Server.

• Optimizer and Abstract Plans – describes how the optimizer
processes queries and how abstract plans can be used to change some
of the optimizer plans.

• Monitoring and Analyzing – explains how statistics are obtained and
used for monitoring and optimizing performance.

• Quick Reference Guide – provides a comprehensive listing of the names
and syntax for commands, functions, system procedures, extended system
procedures, datatypes, and utilities in a pocket-sized book.

• Reference Manual – is a series of four books that contains the following
detailed Transact-SQL® information:

• Building Blocks – Transact-SQL datatypes, functions, global
variables, expressions, identifiers and wildcards, and reserved words.

• Commands – Transact-SQL commands.

• Procedures – Transact-SQL system procedures, catalog stored
procedures, system extended stored procedures, and dbcc stored
procedures.

• Tables – Transact-SQL system tables and dbcc tables.

xiv Monitor Client Library

• System Administration Guide – provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

• System Tables Diagram – illustrates system tables and their entity
relationships in a poster format. Available only in print version.

• Transact-SQL User’s Guide – documents Transact-SQL, Sybase’s
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

• Using Adaptive Server Distributed Transaction Management Features –
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

• Using Sybase Failover in a High Availability System – provides
instructions for using Sybase’s Failover to configure an Adaptive Server
as a companion server in a high availability system.

• Unified Agent and Agent Management Console User’s Guide – Describes
the Unified Agent, which provides runtime services to manage, monitor
and control distributed Sybase resources.

• Utility Guide – documents the Adaptive Server utility programs, such as
isql and bcp, which are executed at the operating system level.

• Web Services User’s Guide – explains how to configure, use, and
troubleshoot Web Services for Adaptive Server.

• XA Interface Integration Guide for CICS, Encina, and TUXEDO –
provides instructions for using the Sybase DTM XA interface with
X/Open XA transaction managers.

• XML Services in Adaptive Server Enterprise – describes the Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that comprise XML Services.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

 About This Book

Programmer’s Guide xv

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

xvi Monitor Client Library

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBFs/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBFs/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBFs/Maintenance report, or click the
product description to download the software.

Conventions The following sections describe conventions used in this manual.

SQL is a free-form language. There are no rules about the number of words you
can put on a line or where you must break a line. However, for readability, all
examples and most syntax statements in this manual are formatted so that each
clause of a statement begins on a new line. Clauses that have more than one part
extend to additional lines, which are indented. Complex commands are
formatted using modified Backus Naur Form (BNF) notation.

Table 1 shows the conventions for syntax statements that appear in this manual:

Table 1: Font and syntax conventions for this manual

Element Example

Command names,procedure names, utility names, and
other keywords display in sans serif font.

select

sp_configure

Database names and datatypes are in sans serif font. master database

 About This Book

Programmer’s Guide xvii

• Syntax statements (displaying the syntax and all options for a command)
appear as follows:

sp_dropdevice [device_name]

For a command with more options:

select column_name
from table_name
where search_conditions

In syntax statements, keywords (commands) are in normal font and
identifiers are in lowercase. Italic font shows user-supplied words.

Book names, file names, variables, and path names are
in italics.

System Administration Guide

sql.ini file

column_name

$SYBASE/ASE directory

Variables—or words that stand for values that you fill
in—when they are part of a query or statement, are in
italics in Courier font.

select column_name

from table_name

where search_conditions

Type parentheses as part of the command. compute row_aggregate (column_name)

Double colon, equals sign indicates that the syntax is
written in BNF notation. Do not type this symbol.
Indicates “is defined as”.

::=

Curly braces mean that you must choose at least one
of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean that to choose one or more of the
enclosed options is optional. Do not type the brackets.

[cash | check | credit]

The comma means you may choose as many of the
options shown as you want. Separate your choices
with commas as part of the command.

cash, check, credit

The pipe or vertical bar(|) means you may select only
one of the options shown.

cash | check | credit

An ellipsis (...) means that you can repeat the last unit
as many times as you like.

buy thing = price [cash | check | credit]

[, thing = price [cash | check | credit]]...

You must buy at least one thing and give its price. You may
choose a method of payment: one of the items enclosed in
square brackets. You may also choose to buy additional
things: as many of them as you like. For each thing you
buy, give its name, its price, and (optionally) a method of
payment.

Element Example

xviii Monitor Client Library

• Examples showing the use of Transact-SQL commands are printed like
this:

select * from publishers

• Examples of output from the computer appear as follows:

pub_id pub_name city state
------- --------------------- ----------- -----
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same.

Adaptive Server’s sensitivity to the case of database objects, such as table
names, depends on the sort order installed on Adaptive Server. You can change
case sensitivity for single-byte character sets by reconfiguring the Adaptive
Server sort order. For more information, see the System Administration Guide.

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

Adaptive Server HTML documentation has been tested for compliance with
U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

 About This Book

Programmer’s Guide xix

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

xx Monitor Client Library

Programmer’s Guide 1

C H A P T E R 1 Getting Started with Monitor
Client Library

This chapter contains information about getting started with Monitor
Client Library.

Overview
Monitor Client Library is part of Adaptive Server Enterprise Monitor. It is
an application programming interface (API) that enables you to write
client applications that connect to Adaptive Server, Adaptive Server
Enterprise Monitor Server (Monitor Server), and Adaptive Server
Enterprise Historical Server (Historical Server) to gather performance
data. This chapter describes Adaptive Server Enterprise Monitor, explains
the components of a Monitor Client Library application, and lists a sample
Monitor Client Library application.

What is Adaptive Server Enterprise Monitor?
Adaptive Server Enterprise Monitor provides a way to monitor Adaptive
Server performance in real time or in a historical data-gathering mode.
System administrators can use this information to identify potential
resource bottlenecks, to research current problems, and to tune for better
performance. Adaptive Server Enterprise Monitor provides feedback for
tuning at several levels:

Topic Page
Overview 1

What is Adaptive Server Enterprise Monitor? 1

Writing a basic Monitor Client Library program 4

A sample Monitor Client Library program 13

What is Adaptive Server Enterprise Monitor?

2 Monitor Client Library

• Adaptive Server configuration

• Table and index design

• SQL statements in applications and stored procedures

Adaptive Server Enterprise Monitor components
Adaptive Server Enterprise Monitor consists of four components that gather or
display Adaptive Server performance data:

• Monitor Server – a server that collects Adaptive Server performance data
in real time and makes the data available to the other Adaptive Server
Enterprise Monitor components. Monitor Server is a Sybase Open
Server™ application.

• Historical Server – a server that obtains Adaptive Server performance data
from Monitor Server and saves the data in files for deferred analysis.
Historical Server is a Sybase Open Server application.

• Monitors in the Adaptive Server plug-in for Sybase Central (Monitor
Viewer) – the monitors provide a graphical user interface to Monitor
Server. They obtain Adaptive Server performance data from Monitor
Server and display the data in real time in tables and graphs.

• Monitor Client Library – an application programming interface to Monitor
Server available to users for developing monitoring applications. Monitor
Viewer and Historical Server are Monitor Client Library applications.

Adaptive Server Enterprise Monitor architecture
Figure 1-1 shows the relationships between Adaptive Server and the various
components of Adaptive Server Enterprise Monitor.

CHAPTER 1 Getting Started with Monitor Client Library

Programmer’s Guide 3

Figure 1-1: Adaptive Server Enterprise Monitor architecture

Adaptive Server saves performance data in a shared memory area that Monitor
Server reads. Because of this shared memory technique, Monitor Server must
be installed and running on the same machine as the Adaptive Server
installation being monitored. A one-to-one relationship exists between
Adaptive Server and Monitor Server. For more information about Monitor
Server, see the Sybase Adaptive Server Enterprise Monitor Server User’s
Guide.

Monitor Client Library applications obtain Adaptive Server performance
statistics from Monitor Server. These applications are clients of Monitor
Server. For performance reasons, Sybase recommends that you run Monitor
Client Library applications on machines other than the ones where Adaptive
Server/Monitor Server pairs are running.

Monitor Viewer in Sybase Central includes a set of monitors showing different
aspects of Adaptive Server resource usage at various levels of detail. Each open
monitor is a separate application, with a unique client connection to Monitor
Server. In Sybase Central, each Adaptive Server installation has its own
Monitors folder containing the set of monitor objects.

Adaptive Server Enterprise

Shared memory

Monitor Server

Adaptive Server Enterprise
client applications, including
isql

Historical
Server

Monitor
Viewer

in
Sybase
Central

Other
Monitor
Client
Library

applications

These servers must
reside on the same

computer.

Open
Client
Library

Monitor
Client
Library

Open
Client
Library

Open
Client
Library

Monitor
Client
Library

Monitor
Client
Library

Writing a basic Monitor Client Library program

4 Monitor Client Library

Historical Server collects performance information from Monitor Server and
saves the information in files for deferred analysis. Historical Server interfaces
let users specify the data to collect and the time period desired. They also
include a historical data playback feature. The interfaces are:

• A command interface in isql. See the Sybase Adaptive Server Enterprise
Monitor Historical Server User’s Guide.

• A programming interface using Monitor Client Library. See Chapter 3,
“Monitor Client Library Functions” and the Sybase Adaptive Server
Enterprise Monitor Historical Server User’s Guide.

Writing a basic Monitor Client Library program
A basic Monitor Client Library application:

1 Defines error handling.

2 Connects to a server using the following steps:

• Allocates a connection.

• Sets properties on a connection.

• Connects to a server.

3 Creates one or more views that define the performance data to be
monitored.

4 Optionally, targets specific performance data values with filters.

5 Optionally, sets alarms on performance data values.

6 Requests performance data values.

7 Processes the results.

8 Closes the connection to the server.

9 Deallocates the connection or reuses it by reconnecting.

Note You must have the System Administrator role on Adaptive Server or
execute permission on the stored procedure mon_rpc_connect to perform
monitoring.

CHAPTER 1 Getting Started with Monitor Client Library

Programmer’s Guide 5

Application logic flow
Most Monitor Client Library applications exhibit a logic flow similar to the
following:

allocate a connection
 set properties on the connection
 connect
 loop to create views on the connection
 loop to create filters (optional)
 loop to create alarms (optional)
 loop to refresh connection
 for each view
 get the row count
 for each row
 for each column
 get the data
 display the data
 loop to drop alarms (optional)
 loop to drop filters (optional)
 loop to drop views (optional)
 close monitor connection
 deallocate or reuse connection

where:

• An application can have any number of connections.

• A connection can have one or more views.

• A view must have one or more data items.

• A view can have one filter per data item.

• A view can have any number of alarms and can have multiple alarms per
data item in the view.

The following sections describe the steps for a basic Monitor Client Library
program.The steps are cross referenced to the sample program that follows
them.

Step 1: Defining error handling
An application uses one or more callback routines to handle Monitor Client
Library and Server error and informational messages.

Writing a basic Monitor Client Library program

6 Monitor Client Library

Step 2: Connecting to a server
The Monitor Client Library functions require an Adaptive Server Enterprise
Monitor connection. The Adaptive Server Enterprise Monitor connection uses
one or more Open Client connections depending upon the connection type.

The two types of Monitor connections are live mode and historical mode:

• Live mode connects to Monitor Server and Adaptive Server. It provides
access to performance data.

• Historical mode connects to Historical Server and either records
performance data for later access or plays back recorded data.

Connecting to a server is a three-step process. An application:

• Allocates a connection structure

• Sets properties for the connection, if necessary

• Logs in to a server

Allocating a connection structure

An application calls smc_connect_alloc to allocate a connection structure.

Setting connection structure properties

An application calls smc_connect_props to set, retrieve, or clear connection
structure properties.

Connection properties define various aspects of a connection’s behavior. For
example:

• SMC_PROP_USERNAME defines the username that a connection will
use when logging in to a server.

• SMC_PROP_PASSWORD specifies the password for the username.

• SMC_PROP_SERVERNAME defines the server for this connection.

• SMC_PROP_IFILE defines the interfaces file name for this connection. If
you do not specify this property on a UNIX system, the default interfaces
file in the SYBASE environment variable directory is used. On Windows
NT, the default interfaces file is sql.ini.

• SMC_PROP_SERVERMODE defines the type of connection: live or
historical.

CHAPTER 1 Getting Started with Monitor Client Library

Programmer’s Guide 7

Required connection properties

At a minimum, an application must set the connection properties that specify
the connection’s username (SMC_PROP_USERNAME) and allow the server
to authenticate the user’s identity by requiring a valid password. If the server
requires a password, then the application must set the
SMC_PROP_PASSWORD property to the value of the user’s server password.

Connecting to a server

An application calls smc_connect_ex to connect to a server. When establishing
a connection, smc_connect_ex sets up communication with the network, logs
in to the server, and communicates any connection-specific property
information to the server. A connection to Adaptive Server writes dbcc traceon
messages to the Adaptive Server error log. You can ignore these messages.

For example, if the server supports network-based user authentication and the
client application requests it, then Client Library and the server query the
network’s security system to see if the user (whose name is specified by
SMC_PROP_USERNAME) is logged in to the network.

Step 3: creating a view
Views are defined groups of data items. The data items specified determine how
the data is summarized. Since you can specify multiple views, the application
has full flexibility in the gathering of data. For example, a view consisting of
two data items (device name, value for sample and device I/O, rate for sample)
returns the device I/O rate for each database device.

For details on valid combinations of data items and information about how data
items are summarized, see Chapter 2, “Data Items and Statistical Types.”

For examples of views, see Appendix A, “Examples of Views”.

Data items

A data item is a particular piece of data that can be obtained from the Monitor
Client Library, for example, page I/O, login name, device reads, and so on. For
each data item in a view, you must specify a statistical type.

Writing a basic Monitor Client Library program

8 Monitor Client Library

Statistical types

The statistic type defines the duration of the data item (sample or session) and
whether the server performs calculations on the data item.

The six statistic types are:

• SMC_STAT_VALUE_SAMPLE – this statistic type returns a count of
activity or some type of information that applies to the most recent sample
interval. No calculations are performed.

• Activity counts – for data items that represent activity counts,
SMC_STAT_VALUE_SAMPLE returns the number of occurrences
of an activity during the most recent sample interval. For example,
SMC_STAT_VALUE_SAMPLE for SMC_NAME_PAGE_IO is the
number of page I/Os that occurred during the most recent sample
interval.

• Other information – this is the only statistic type valid for data items
that represent character strings. For example,
SMC_STAT_VALUE_SAMPLE for
SMC_NAME_OBJECT_NAME returns the name of a database
object. This statistic type is also the only one valid for data items that
represent values such as IDs and values for configured parameters, on
which calculations are never performed.

• SMC_STAT_VALUE_SESSION – this statistic type returns a cumulative
count of activity since the start of gathering the data (since the connection
was opened). No calculations are performed. For example,
SMC_STAT_VALUE_SESSION for SMC_NAME_PAGE_IO is the
number of page I/Os that occurred since the session started.

• SMC_STAT_RATE_SAMPLE – this statistic type calculates a rate per
second. It returns the average number of occurrences per second of an
activity during the most recent sample interval. For example,
SMC_STAT_RATE_SAMPLE for SMC_NAME_PAGE_IO is the
average number of page I/Os that occurred each second during the most
recent sample interval.

The calculation is count for the most recent sample interval divided by
number of seconds in the sample interval.

CHAPTER 1 Getting Started with Monitor Client Library

Programmer’s Guide 9

• SMC_STAT_RATE_SESSION – this statistic type calculates a rate per
second. It returns the average number of occurrences per second of an
activity during the current session. For example,
SMC_STAT_RATE_SESSION for SMC_NAME_PAGE_IO is the
average number of page I/Os that occurred per second since the session
started.

The calculation is count for the session divided by number of seconds in
the session.

• SMC_STAT_AVG_SAMPLE – this statistic type calculates an average
value per occurrence of an activity over the most recent sample interval.
Only a few data items can use this statistic type. The meaning of the
returned value depends on the data item name. For example,
SMC_STAT_AVG_SAMPLE for SMC_NAME_STP_ELAPSED_TIME
is the average execution time per execution of a stored procedure during
the most recent sample interval.

• SMC_STAT_AVG_SESSION – this statistic type calculates an average
value per occurrence of an activity over the session. Only a few data items
can use this statistic type. The meaning of the returned value depends on
the data item name. For example, SMC_STAT_AVG_SESSION for
SMC_NAME_STP_ELAPSED_TIME is the average execution time per
execution of a stored procedure during the recording session.

Note Not all statistical types are valid for all data items. See Chapter 2, “Data
Items and Statistical Types” for more information about data items and the
rules for using them.

Creating views for a connection

smc_create_view creates a view on a particular Monitor connection. A
connection must have at least one view.

For details on valid combinations of data items and information about how data
items are summarized, see Chapter 2, “Data Items and Statistical Types.”

You can think of a view as a table. The data items in a view are represented by
the columns in that table. The number of rows returned for a particular view
depends upon the particular data items in the view. For example, a view with
server-wide data returns a single row, whereas a view with per-device data
returns one row for each device.

For example:

Writing a basic Monitor Client Library program

10 Monitor Client Library

A view consisting of two data items returns the rate of requested locks for each
lock type during the sample interval:

SMC_NAME_LOCK_TYPE, SMC_STAT_VALUE_SAMPLE
SMC_NAME_LOCK_COUNT, SMC_STAT_RATE_SAMPLE

A view consisting of one data item returns the rate of requested locks
summarized for all lock types during the sample interval:

SMC_NAME_LOCK_COUNT, SMC_STAT_RATE_SAMPLE

For complete details on valid combinations of data items and understanding of
how data items are summarized, see Chapter 2, “Data Items and Statistical
Types.”

Step 4: Creating filters
smc_create_filter creates a filter on a data item. Filters limit the number of rows
of performance data returned by a view. A filter can be applied to any data item
specified in a view. A view can contain one filter per data item. If you include
more than one filter in a view, Monitor Client Library uses ANDs to include
those filters.

The types of filters available are:

• Equal to – returns only values equal to one of the specified values (logical
OR of each Equal comparison).

• Not Equal to – returns only values equal to none of the specified value
(logical AND of each Not-Equal comparison).

• Greater than or equal to – returns values greater than or equal to the
specified value.

• Less than or equal to – returns values less than or equal to the specified
value

• Range – bottom is less than or equal to value which is less than or equal to
top; returns values between the top and bottom values, inclusive

• Top N – returns the N highest values

A view may contain more than one filter, but any particular data item can only
have one filter bound to it. When a view contains more than one filter, the
filters are combined with an AND.

You can add or drop filters at any time. The change in filtering takes effect as
of the next refresh.

CHAPTER 1 Getting Started with Monitor Client Library

Programmer’s Guide 11

Step 5: Setting alarms
smc_create_alarm_ex sets an alarm on any numeric data item (except for IDs)
in a view. When specifying an alarm for a particular data item in a live
connection, an application supplies a callback function that is invoked when
the alarm is triggered.

The Historical Server cannot call a callback function, but it can write to a log
file or execute a procedure each time an alarm is triggered.

An example of the type of actions an application can execute upon the
triggering of an alarm is to log a message, which is one of the features provided
by Historical Server.

You can add or drop an alarm at any time. The change in alarm specification
takes effect as of the next refresh.

Note Monitor Client Library applies alarms after it applies filters.

Step 6: Requesting performance data and process results
After all of the connections, views, alarms, and filters are created, an
application requests values for performance data. Retrieving performance data
is a three-step process:

1 Refresh the data.

2 Check the row count.

3 Look at each data item in the view.

When a Monitor Client Library application needs to retrieve data, it initiates a
refresh, which causes Monitor Client Library to obtain fresh data. After each
refresh, the application retrieves the data in each view on an item-by-item basis
(that is, for each column of a table).

After calling smc_refresh_ex on a given connection, the application retrieves
the data.

Depending on the number of events being collected, frequent refreshes might
be necessary. A view that contains many keys needs more frequent refreshes
than views with one or a few keys. The following symptoms might indicate an
application that is not refreshing frequently enough:

Writing a basic Monitor Client Library program

12 Monitor Client Library

• Very large numbers of lost events reported in the Monitor Server error log.
The Sybase Adaptive Server Enterprise Monitor Server User’s Guide
discusses configuration changes that can also help to reduce event loss.

• The application appears to hang in a call to smc_refresh_ex. A large
number of keys in a view can cause a condition in which Monitor Server
cannot keep up with the number of events being collected and does not
return control. Because of this, Monitor Server begins to consume large
amounts of CPU time.

smc_get_row_count determines how many rows of results are available for a
view. A view returns results in what is essentially a table with potentially many
“rows” of result data, but in some cases, possibly zero rows.

smc_get_dataitem_value retrieves performance data values for a single column
of a single row of a view.

Filters and alarms are applied during the refresh of the data.

Polling for new performance data is client-driven and is limited only by the
speed of the data-providing system and the data-gathering system.

Step 7: closing and deallocating connections
Before exiting, a Monitor Client Library application must:

• Close all open connections.

• Deallocate each connection.

Closing and deallocating connections

An application calls smc_close to close a connection and smc_connect_drop to
deallocate a connection structure. It is an error to deallocate a connection that
has not been closed. A call to smc_close results in the following implicit
Monitor Client Library calls:

• One or more calls to smc_drop_alarm to remove alarms, if necessary.

• One or more calls to smc_drop_filter to remove filters, if necessary.

• One or more calls to smc_drop_view to remove views.

CHAPTER 1 Getting Started with Monitor Client Library

Programmer’s Guide 13

Reopening connections

After an application closes a connection, but before it deallocates the
connection structure, it can call smc_connect_ex to reopen the connection.

Playing back recorded data
To retrieve recorded data from Historical Server, the steps are similar to the
above, except:

• The application must connect to Historical Server. Set
smc_prop_servermode to SMC_SERVER_M_HISTORICAL before
making the connection.

• The application must call smc_create_playback_session after connecting,
but before creating views.

• The application must call smc_initiate_playback after creating all views.

• Alarms are not allowed on playback of recorded historical data.

• Views and filters cannot be dropped.

• After the last refresh, the application must call smc_terminate_playback.

A sample Monitor Client Library program
This section contains a listing for a sample Monitor Client Library program
that connects to a server, sends a query, processes the results, then exits.

Example program
The following example program, monitor.c, demonstrates the steps outlined in
the previous section. Commentary for each step follows the example.

/*monitor.c
** Example program showing logic flow of Monitor Client Library
** application. This example assumes the use of an ANSI C
** compliant compiler. This program creates two connections
** to the Monitor Server. Data is extracted from one connection
** at the beginning and end of the monitoring session.
** Data is extracted from the other connection every

A sample Monitor Client Library program

14 Monitor Client Library

** SAMPLE_INTERVAL seconds NUM_OF_SAMPLES times.
*/
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

/* The mcpublic.h header file contains function prototypes, etc.
** for monitor client library functions. It also includes a
** header file called mctypes.h, which defines the datatypes
** used for monitor client library applications.
*/

#include "mcpublic.h"
#define NUM_OF_SAMPLES 10
#define SAMPLE_INTERVAL 5
#define NUM_SERVER_DATA_ITEMS 3
#define NUM_DB_INFO_ITEMS 14
#define NUM_NW_INFO_ITEMS 6
#define OPTIONAL_CALLS -1

/*Error signals*/
#define VIEW_NONEXISTENT -1
#define CONNECT_NONEXISTENT -1

SMC_RETURN_CODE main (SMC_INT argc, SMC_CHARP argv[])
{
SMC_VALUE_UNION serverNameUnion;
SMC_VALUE_UNION userNameUnion;
SMC_VALUE_UNION passwordUnion;
SMC_VALUE_UNION interfacesFileUnion;
SMC_VALUE_UNION workUnion;
SMC_VALUE_UNION returnedDataUnion;
SMC_CONNECT_ID connect1_id;
SMC_CONNECT_ID connect2_id;
SMC_VIEW_ID server_view_id;
SMC_VIEW_ID db_info_view_id;
SMC_VIEW_ID nw_info_view_id;

SMC_RETURN_CODE ret;
SMC_DATAITEM_TYPE dataitem_type; /*Holds data item type

returned by get_dataitem_type
function call*/

/*Needed if alarms and filters are used */
#ifdef OPTIONAL_CALLS

SMC_ALARM_ID alarm_id;
SMC_FILTER_ID filter_id;
SMC_CHARP filter_strings[2]; /*datatype is pointer to

string. This is an array

CHAPTER 1 Getting Started with Monitor Client Library

Programmer’s Guide 15

of pointers.*/
#endif

SMC_SIZET row,num_of_rows,item; /*This is an integer data
type*/

SMC_SIZET outputLength; /*Length of output returned
by smc_connect_props

function call*/
/*
** Definition of SMC_DATAITEM_STRUCT datatype
*/

SMC_DATAITEM_STRUCT server_info_view[NUM_SERVER_DATA_ITEMS];
SMC_DATAITEM_STRUCT db_info_view[NUM_DB_INFO_ITEMS];
SMC_DATAITEM_STRUCT nw_bytes_view[NUM_NW_INFO_ITEMS];

SMC_VALUE_UNION server_data[NUM_SERVER_DATA_ITEMS];
SMC_VALUE_UNION db_data[NUM_DB_INFO_ITEMS];
SMC_VALUE_UNION nw_data[NUM_NW_INFO_ITEMS];

/*Callback function prototypes. Actual functions are defined
** below.
*/
SMC_VOID errorCallback(SMC_CONNECT_ID,SMC_COMMAND_ID,SMC_VOIDP);
SMC_VOID alarmCallback(SMC_CONNECT_ID,SMC_COMMAND_ID,SMC_VOIDP);

SMC_BOOL explicitInterfacesFile = FALSE;

int index,iterations;

/*
** These are labels used when printing out data returned by the
** database info view.
*/

SMC_CHARP db_info_labels[NUM_DB_INFO_ITEMS] = {
"Database ID: ",
"Object ID: ",
"Database name: ",
"Object name: ",
"Page hit percent: ",
"Page I/O: ",
"Page logical reads this sample: ",
"Page logical reads this session: ",
"Page logical read rate this sample: ",
"Page logical read rate this session: ",
"Page physical reads this sample: ",
"Page physical reads this session: ",
"Page physical read rate this sample: ",

A sample Monitor Client Library program

16 Monitor Client Library

"Page physical read rate this session: "
};

/*
** These are labels used when printing out data returned by
** network info view.
*/

SMC_CHARP nw_info_labels[NUM_NW_INFO_ITEMS] = {
"Network bytes received this sample: ",
"Network bytes received this session: ",
"Network bytes sent this sample: ",
"Network bytes sent this session: ",
"Network byte I/O rate this sample: ",
"Network byte I/O rate this session: "

};
if (argc <5){
printf("Usage <%s> -U <user_name> [-P <password>]\

-S <monserver name> [-I <interfaces_file>]\n",argv[0]);
exit(1);

}
/*
** Connect to a server.
*/

Code for connecting
to a server

For commentary, see “Step 2: Connecting to a server” on page 6.

/*
** Allocate first connection
*/

ret=smc_connect_alloc(errorCallback,
&connect1_id /*Pointer to connect_id!*/
);

if (ret != SMC_RET_SUCCESS) {
printf("Attempt to allocate first connection failed \

with error %d.\n",ret);
exit(1);

}
/*
** Allocate second connection
*/

ret=smc_connect_alloc(errorCallback,
&connect2_id /*Pointer to connect_id!*/
);

if (ret != SMC_RET_SUCCESS) {
printf("Attempt to allocate second connection failed \

with error %d.\n",ret);
exit(1);

CHAPTER 1 Getting Started with Monitor Client Library

Programmer’s Guide 17

}
/*
** Set mandatory and some optional connection properties.
** Mandatory connection properties are user name, server name,

 ** and password if user password is not NULL. If interfaces
 ** file name is not set, default is "interfaces" in directory
 ** pointed to by $SYBASE environment variable.

Code for required
connection properties

For commentary, see “Required connection properties” on page 7.

*/

for (index=1;index<argc;index++) {
/*User name*/

if (strncmp(argv[index],"-U",2) == 0) {
userNameUnion.stringValue = argv[index+1];
ret=smc_connect_props(connect1_id,

SMC_PROP_ACT_SET, /*Property action*/
SMC_PROP_USERNAME,/*Property*/
&userNameUnion, /*Note that union,

not member of union,
is used for
property value*/

SMC_NULLTERM, /*Indicates null-
terminated string
for buffer length*/

NULL /*Use NULL when
setting a property*/

);
} /*End if argument is user name*/

if (ret != SMC_RET_SUCCESS) {
printf("Could not set user name.\n");
exit(SMC_RET_FAILURE);

}
/*Password. Default password is a null string*/ if (strncmp(argv[index

],"-P",2) == 0) {
passwordUnion.stringValue = argv[index+1];
ret=smc_connect_props(connect1_id,

SMC_PROP_ACT_SET, /*Property action*/
SMC_PROP_PASSWORD,/*Property*/
&passwordUnion, /*Note that union,

not member of union,
is used for
property value*/

SMC_NULLTERM, /*Indicates null-
terminated string

A sample Monitor Client Library program

18 Monitor Client Library

for buffer length*/
NULL /*Use NULL when

setting a property*/
);

} /*End if argument is password*/
if (ret != SMC_RET_SUCCESS) {
printf("Could not set password.\n");
exit(SMC_RET_FAILURE);

}
/*Server name*/

if (strncmp(argv[index],"-S",2) == 0) {
serverNameUnion.stringValue = argv[index+1];
ret=smc_connect_props(connect1_id,

SMC_PROP_ACT_SET, /*Property action*/
SMC_PROP_SERVERNAME,/*Property*/
&serverNameUnion, /*Note that union,

not member of union,
is used for
property value*/

SMC_NULLTERM, /*Indicates null-
terminated string
for buffer length*/

NULL /*Use NULL when
setting a property*/

);
} /*End if argument is server name*/

if (ret != SMC_RET_SUCCESS) {
printf("Could not set server name.\n");
exit(SMC_RET_FAILURE);

}
/*Interfaces file. If unspecified, $SYBASE/interfaces is used*/

if (strncmp(argv[index],"-I",2) == 0) {
interfacesFileUnion.stringValue = argv[index+1];
ret=smc_connect_props(connect1_id,

SMC_PROP_ACT_SET, /*Property action*/
SMC_PROP_IFILE, /*Property*/
&interfacesFileUnion, /*Note that

pointer to union,
not member of
union,is used for
property value*/

SMC_NULLTERM, /*Indicates null-
terminated string
for buffer length*/

NULL /*Use NULL when
setting a property*/

CHAPTER 1 Getting Started with Monitor Client Library

Programmer’s Guide 19

);
explicitInterfacesFile = TRUE;

} /*End if argument is interfaces file pathname*/
if (ret != SMC_RET_SUCCESS) {

printf("Could not set interfaces file name.\n");
printf("Using default interfaces file.\n");

}
} /*End for loop getting connection properties

from command-line arguments*/
/*
** Optional smc_get_connect_props call that sets a pointer to be
** passed to error callback. In this case, the pointer is to a
** string that tells which connection encountered the error.
*/

workUnion.voidpValue = "first connection"; /*Call to set user
data handle looks
for value to set in
void pointer member
of union.*/

ret=smc_connect_props(connect1_id,SMC_PROP_ACT_SET,\
SMC_PROP_USERDATA,&workUnion,SMC_NULLTERM,NULL);

if (ret != SMC_RET_SUCCESS){
printf("smc_connect_props call failed to \

set userDataHandle.\n");
}

/*
** Demonstration of "get" mode for smc_get_connect_props
*/
/*Check if user name has been set*/
ret=smc_connect_props(connect1_id,

SMC_PROP_ACT_GET,/*Property action is "get"*/
SMC_PROP_USERNAME,
&workUnion,
SMC_UNUSED, /*Length parameter ignored

on "get" operations*/
&outputLength /*Note this is a pointer!*/

);
if (ret != SMC_RET_SUCCESS) {

printf ("Could not get user name. Execution continuing.\n");
}
else {

if (outputLength == 0) {
printf("User name not set. Quitting execution.\n");
exit(SMC_RET_FAILURE);

}
else {

A sample Monitor Client Library program

20 Monitor Client Library

/*
** Application is responsible for freeing
** memory allocated to string member of SMC_VALUE_UNION by
** library.
*/

free(workUnion.stringValue);
}
}

/*Check if server name has been set*/
ret=smc_connect_props(connect1_id,

SMC_PROP_ACT_GET,/*Property action is "get"*/
SMC_PROP_SERVERNAME,
&workUnion,
SMC_UNUSED, /*Length parameter ignored

on "get" operations*/
&outputLength /*Note this is a pointer!*/

);
if (ret != SMC_RET_SUCCESS) {
printf ("Could not get server name. Execution continuing.\n");
}
else {
if (outputLength == 0) {

printf("Server name not set. Quitting execution.\n");
exit(SMC_RET_FAILURE);
}
else {

free(workUnion.stringValue);
}

}
/*
** Allocate properties for second connection. No need to
** repeat error checking.
*/
ret=smc_connect_props(connect2_id,SMC_PROP_ACT_SET, \

SMC_PROP_USERNAME,&userNameUnion,SMC_NULLTERM, NULL);
if (ret != SMC_RET_SUCCESS) {
printf("Could not set user name for second connection.\n");
exit(SMC_RET_FAILURE);

}
ret=smc_connect_props(connect2_id,SMC_PROP_ACT_SET, \

SMC_PROP_PASSWORD,&passwordUnion,SMC_NULLTERM,NULL);
if (ret != SMC_RET_SUCCESS) {
printf("Could not set password for second connection.\n");
exit(SMC_RET_FAILURE);

}
ret=smc_connect_props(connect2_id,SMC_PROP_ACT_SET, \

CHAPTER 1 Getting Started with Monitor Client Library

Programmer’s Guide 21

SMC_PROP_SERVERNAME,&serverNameUnion,SMC_NULLTERM,NULL);
if (ret != SMC_RET_SUCCESS) {

printf("Could not set server name for second connection.\n");
exit(SMC_RET_FAILURE);

}
if (explicitInterfacesFile) {

ret=smc_connect_props(connect2_id,SMC_PROP_ACT_SET, \
SMC_PROP_IFILE,&interfacesFileUnion,SMC_NULLTERM,NULL);

if (ret != SMC_RET_SUCCESS) {
printf("Could not set server name for second connection.\n");
exit(SMC_RET_FAILURE);
}

}

/*
** Optional smc_connect_props call to set user-defined pointer to
** be passed to error callback. This pointer points to a
** string that tells where the error callback was triggered.
*/
workUnion.voidpValue = "second connection"; /*Call to set user

data handle looks for
value to set in void
pointer member
of union.*/

ret=smc_connect_props(connect2_id,SMC_PROP_ACT_SET, \
SMC_PROP_USERDATA,&workUnion,SMC_NULLTERM,NULL);

if (ret != SMC_RET_SUCCESS){
printf("smc_connect_props call failed to set userDataHandle.\n");

}
/*
** Connect to monitor server

Code for connecting
to a server

For commentary, see “Connecting to a server” on page 7.

*/
/*
** First connection
*/

ret=smc_connect_ex(connect1_id);
if (ret != SMC_RET_SUCCESS) {
printf("First connection failed to connect to \

monitor server.\n");
exit(SMC_RET_FAILURE);
}

/*

A sample Monitor Client Library program

22 Monitor Client Library

** Second connection
*/

ret=smc_connect_ex(connect2_id);
if (ret != SMC_RET_SUCCESS) {
printf("Second connection failed to connect to \

monitor server.\n");
exit(SMC_RET_FAILURE);

}

/*
 ** Create views on connections.
 */

Code for creating a
view

For commentary, see “Step 3: creating a view” on page 7.

** Define views.
/*
** Each data item must be paired with a
** statistic type . View definitions are used in create_view
** calls after connecting to monitor server.
*/
/*This is a server-

wide view that returns one row of data*/ server_info_view[0].dataItemName
=SMC_NAME_SQL_SERVER_NAME;

server_info_view[0].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
server_info_view[1].dataItemName = SMC_NAME_SQL_SERVER_VERSION;
server_info_view[1].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
server_info_view[2].dataItemName = SMC_NAME_TIMESTAMP;
server_info_view[2].dataItemStatType = SMC_STAT_VALUE_SAMPLE;

/*
** This is a view with key and result data items that returns
** multiple rows of data.
*/

db_info_view[0].dataItemName = SMC_NAME_DB_ID; /*Key data items*/
db_info_view[0].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
db_info_view[1].dataItemName = SMC_NAME_OBJ_ID;
db_info_view[1].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
db_info_view[2].dataItemName = SMC_NAME_DB_NAME; /*Result data

items*/
db_info_view[2].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
db_info_view[3].dataItemName = SMC_NAME_OBJ_NAME;
db_info_view[3].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
db_info_view[4].dataItemName = SMC_NAME_PAGE_HIT_PCT;

CHAPTER 1 Getting Started with Monitor Client Library

Programmer’s Guide 23

db_info_view[4].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
db_info_view[5].dataItemName =SMC_NAME_PAGE_IO;
db_info_view[5].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
db_info_view[6].dataItemName = SMC_NAME_PAGE_LOGICAL_READ;
db_info_view[6].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
db_info_view[7].dataItemName = SMC_NAME_PAGE_LOGICAL_READ;
db_info_view[7].dataItemStatType = SMC_STAT_VALUE_SESSION;
db_info_view[8].dataItemName = SMC_NAME_PAGE_LOGICAL_READ;
db_info_view[8].dataItemStatType = SMC_STAT_RATE_SAMPLE;
db_info_view[9].dataItemName = SMC_NAME_PAGE_LOGICAL_READ;
db_info_view[9].dataItemStatType = SMC_STAT_RATE_SESSION;
db_info_view[10].dataItemName = SMC_NAME_PAGE_PHYSICAL_READ;
db_info_view[10].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
db_info_view[11].dataItemName = SMC_NAME_PAGE_PHYSICAL_READ;
db_info_view[11].dataItemStatType = SMC_STAT_VALUE_SESSION;
db_info_view[12].dataItemName = SMC_NAME_PAGE_PHYSICAL_READ;
db_info_view[12].dataItemStatType = SMC_STAT_RATE_SAMPLE;
db_info_view[13].dataItemName = SMC_NAME_PAGE_PHYSICAL_READ;
db_info_view[13].dataItemStatType = SMC_STAT_RATE_SESSION;

/*
** Another server-wide view
*/

nw_bytes_view[0].dataItemName = SMC_NAME_NET_BYTES_RCVD;
nw_bytes_view[0].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
nw_bytes_view[1].dataItemName = SMC_NAME_NET_BYTES_RCVD;
nw_bytes_view[1].dataItemStatType = SMC_STAT_VALUE_SESSION;
nw_bytes_view[2].dataItemName = SMC_NAME_NET_BYTES_SENT;
nw_bytes_view[2].dataItemStatType = SMC_STAT_VALUE_SAMPLE;
nw_bytes_view[3].dataItemName = SMC_NAME_NET_BYTES_SENT;
nw_bytes_view[3].dataItemStatType = SMC_STAT_VALUE_SESSION;
nw_bytes_view[4].dataItemName = SMC_NAME_NET_BYTE_IO;
nw_bytes_view[4].dataItemStatType = SMC_STAT_RATE_SAMPLE;
nw_bytes_view[5].dataItemName = SMC_NAME_NET_BYTE_IO;
nw_bytes_view[5].dataItemStatType = SMC_STAT_RATE_SESSION;

ret=smc_create_view (connect1_id, /*Connect ID assigned when
connect allocated*/

server_info_view, /*This is a pointer to
array of SMC_DATAITEM_STRUCTS
which defines the view*/

NUM_SERVER_DATA_ITEMS, /*No. of items in
the view*/

"server info view", /*Ignored on a live
connection*/

&server_view_id /*Value is assigned
by this call*/

A sample Monitor Client Library program

24 Monitor Client Library

);
if (ret != SMC_RET_SUCCESS) { /*Cleanup from failed

create_view call*/
ret=smc_connect_drop(connect1_id); /*Create view failed

so no further use for
this connection*/

connect1_id = CONNECT_NONEXISTENT;
}
/*
** The second connection will have two views
*/

ret=smc_create_view(connect2_id,db_info_view,NUM_DB_INFO_ITEMS,
"db info view",&db_info_view_id);

if (ret != SMC_RET_SUCCESS) {
db_info_view_id = VIEW_NONEXISTENT;

}
ret=smc_create_view(connect2_id,nw_bytes_view,NUM_NW_INFO_ITEMS,

"nw bytes view",&nw_info_view_id);
if (ret != SMC_RET_SUCCESS) {
nw_info_view_id = VIEW_NONEXISTENT;

}
/*
** Create a filter.
*/

Code for creating
filters

For commentary, see “Step 4: Creating filters” on page 10.

/*
** Filters and alarms may be applied to data items within a view.
** This is optional.
** In this case, we only want to see I/O activity for a
** particular database and tempdb. If any physical reads occur,
** an alarm is triggered that posts a message to the screen.
*/

#ifdef OPTIONAL_CALLS
filter_strings[0] = "my_db"; /*Change to db of interest*/
filter_strings[1] = "tempdb";
workUnion.voidpValue = filter_strings;
ret=smc_create_filter(connect2_id, /*Connection id*/

db_info_view_id, /*View id*/
&db_info_view[2], /*Pointer to a data

item within the view
to be filtered*/

SMC_FILT_T_EQ, /*Type of filter*/
&workUnion, /*Filter value*/

CHAPTER 1 Getting Started with Monitor Client Library

Programmer’s Guide 25

2, /*Number of elements
in array of filter
values*/

SMC_DI_TYPE_CHARP, /*datatype of filter
values*/

&filter_id /*Value is assigned by
this function call*/

);
if (ret != SMC_RET_SUCCESS) {

printf("Filters were not applied. Continuing execution.\n");
}

/*
** Set alarms.

*/

Code for setting
alarms

For commentary, see “Step 5: Setting alarms” on page 11.

workUnion.longValue = 1; /*Value above which
alarm is triggered*/

ret=smc_create_alarm_ex(connect2_id, /*Connection id*/
db_info_view_id, /*View id*/
&db_info_view[11], /*Pointer to a data

item within the view
to which the alarm
is applied*/

&workUnion, /*Where value that
triggers the alarm
is located*/

SMC_DI_TYPE_LONG, /*datatype of item
to which alarm is
applied*/

SMC_ALARM_A_NOTIFY,/*Trigger alarm
callback function.
This is the only
action possible when
the server mode is
LIVE.*/

NULL, /*For server mode HISTORICAL,
this is where log file to be
written to or program to be
run is specified. For server
mode LIVE, this field is
ignored.*/

/*The following is a string that is passed to the alarm callback function.
*/

A sample Monitor Client Library program

26 Monitor Client Library

"Physical read occurred in database.",
alarmCallback, /*Alarm callback

function*/
&alarm_id /*Variable into which

alarm id is placed.*/
);

if (ret != SMC_RET_SUCCESS) {
printf("Alarm was not applied. Execution continuing.\n");

}
#endif

/*
** Request data and process results.

*/

Code for requesting
performance data and
process results

For commentary, see “Step 6: Requesting performance data and process
results” on page 11.

/*
** Get data from first connection. As server name and version
** do not change during the connection, we only get it once.
** Post the time when the refresh was done.
*/

if (connect1_id != CONNECT_NONEXISTENT) { /*If the connect is
not successful,the
error callback is
triggered. For a
friendlier display,
we check first.*/

ret=smc_refresh_ex(connect1_id, /*ID of connect*/
0 /*STEP not used in

live connection*/
);

if (ret != SMC_RET_SUCCESS) {
printf("refresh call failed on first connect ID.\n");

}
else { /*Check row count even though only one

row is expected in this case. If no
rows are returned, get_dataitem_value
calls will return errors.*/

ret=smc_get_row_count(connect1_id,
server_view_id,
#_of_rows);

if (ret != SMC_RET_SUCCESS){
printf("Get row count call failed.\n");
}
else {

CHAPTER 1 Getting Started with Monitor Client Library

Programmer’s Guide 27

if (num_of_rows > 0){
/*
** A get_dataitem_value call is made for each item in the view.
** The retrieved data is stored in an array of SMC_VALUE_UNIONs.
*/

for (index=0;index <NUM_SERVER_DATA_ITEMS;index++){
ret=smc_get_dataitem_value(connect1_id,

server_view_id,
&server_info_view[index],/*Look at

each data
item in
the view*/

0, /*Only one row of
data is returned for
this particular view,
so the value for row
is hard-coded in this
case.*/

&server_data[index] /*Retrieved
data stored
here*/

);
} /*End for loop*/

/*
** Display the returned data.
*/

printf("Adaptive Server Enterprise name is: \
%s.\n",server_data[0].stringValue);

printf("Adaptive Server Enterprise version is: \
%s.\n",server_data[1].stringValue);

printf("Date and time is: \
%s.\n",server_data[2].stringValue);

/*
** The application is responsible for freeing memory allocated
** by the Monitor Client Library for string members of
** SMC_VALUE_UNIONs. This also illustrates the use of the
** smc_get_dataitem_type function call.
*/
for (index=0;index <NUM_SERVER_DATA_ITEMS;index++){

ret=smc_get_dataitem_type(&server_info_view[index], \
&dataitem_type);

if (ret != SMC_RET_SUCCESS) {
printf("Get dataitem type failed for item %d \

in server_info_view.\n");
}
else {

A sample Monitor Client Library program

28 Monitor Client Library

if (dataitem_type == SMC_DI_TYPE_CHARP) {
free(server_data[index].stringValue);

}
}

} /*End for loop*/
} /*End if number of rows > 0*/

} /*End case get_row_count was successful*/
} /*End case smc_refresh_ex call was successful*/

} /*End case connect still valid*/
/*
** Get the data from the views in the second connection to see
** how the data changes over time. To do this, we sample
** NUM_OF_SAMPLES times, pausing SAMPLE_INTERVAL times between
** each sample. The process of retrieving data is within a loop.
*/
for (iterations=0;iterations<NUM_OF_SAMPLES;iterations++){

sleep(SAMPLE_INTERVAL);
ret=smc_refresh_ex(connect2_id, /*Note second connection

specified for refresh*/
0 /*Step not used in live

connection*/
);

if (ret == SMC_RET_SUCCESS) {
if (db_info_view_id != VIEW_NONEXISTENT){ /*Attempting

get_row_count for
nonexistent view
will cause errors
so check if view
was actually
created*/

ret=smc_get_row_count(connect2_id,
db_info_view_id,
#_of_rows /*Multiple rows will

be returned. For
each row of data
returned, use
get_dataitem_value
loop. Function call
puts number of rows
returned into
variable.*/

);
for(row=0;row<num_of_rows;row++){

for (index=0;index <NUM_DB_INFO_ITEMS;index++){
ret=smc_get_dataitem_value(connect2_id,

db_info_view_id, /*View specified for

CHAPTER 1 Getting Started with Monitor Client Library

Programmer’s Guide 29

get_dataitem_value.*/
&db_info_view[index],
row, /*Multiple rows in

this case */
&db_data[index]
);

if (ret != SMC_RET_SUCCESS) {
printf("Get dataitem value failed for data item \

%s.\n",db_info_labels[index]);
}
else {
printf("%s",db_info_labels[index]);
ret=smc_get_dataitem_type(&db_info_view[index],\

&dataitem_type);
if (ret != SMC_RET_SUCCESS){

printf("Get data item type failed for data item \
%s.\n",db_info_view[index]);

}
else {

switch (dataitem_type) {
case SMC_DI_TYPE_CHARP:

printf("%s.\n",db_data[index].stringValue);
free(db_data[index].stringValue);
/*Application is responsible for freeing
memory allocated for strings by library*/
break;

case SMC_DI_TYPE_LONG:
printf("%d.\n",db_data[index].longValue);
break;

case SMC_DI_TYPE_DOUBLE: /*Rates are generally
floating point variables*/

printf("%f.\n",db_data[index].doubleValue);
break;

default:
printf("Unknown datatype encountered.\n");
break;

} /*End switch*/
} /*End case get_dataitem_type successful*/

} /*End case get_dataitem_value successful*/
} /*End for loop to get each data item value*/

} /*End for loop to get each row of data*/
} /*End case view exists*//*

** Retrieve data from second view in refresh.
** Processing is much the same.
*/

if (nw_info_view_id != VIEW_NONEXISTENT){ /*Attempting

A sample Monitor Client Library program

30 Monitor Client Library

get_row_count for
nonexistent view
causes errors, so
check to see if
view was actually
created*/

ret=smc_get_row_count(connect2_id,
nw_info_view_id,
#_of_rows /*This is a server-

wide view so only
one row should be
returned*/

);
if (num_of_rows > 0){

for (index=0;index <NUM_NW_INFO_ITEMS;index++){
ret=smc_get_dataitem_value(connect2_id,

nw_info_view_id, /*Note view
specified for

get_dataitem_value*/
&nw_bytes_view[index],
0, /*One row in this case*/
&nw_data[index]
);

if (ret != SMC_RET_SUCCESS) {
printf("Get dataitem value failed for data item \

%s.\n",nw_info_labels[index]);
}
else {

printf("%s",nw_info_labels[index]);
ret=smc_get_dataitem_type(&nw_bytes_view[index],\

&dataitem_type);
if (ret != SMC_RET_SUCCESS){

printf("Get data item type failed for data item \
%s.\n",nw_bytes_view[index]);

}
else {

switch (dataitem_type) {
case SMC_DI_TYPE_CHARP:

printf("%s.\n",nw_data[index].stringValue);
free(nw_data[index].stringValue);
/*Application is responsible for freeing
memory allocated for strings by library*/
break;

case SMC_DI_TYPE_LONG:
printf("%d.\n",nw_data[index].longValue);
break;

CHAPTER 1 Getting Started with Monitor Client Library

Programmer’s Guide 31

case SMC_DI_TYPE_DOUBLE: /*Rates are generally
floating point
variables*/

printf("%f.\n",nw_data[index].doubleValue);
break;

default:
printf("Unknown datatype encountered.\n");
break;

} /*End switch*/
} /*End case get_dataitem_type successful*/

} /*End case get_dataitem_value successful*/
} /*End for loop to get each data item value*/

} /*End if any rows of data returned*/
else {

printf("No data returned for network info view.\n");
}

} /*End case view exists*/
} /*End case refresh successful*/
else {

printf("Refresh of second connect failed. \
Return code is %d.\n",ret);

}
} /*End for loop for number of iterations*//*

** This shows how to drop filters and alarms. It is not necessary
** to do this prior to closing a connection, as it is done
** automatically when the connection is closed. Filters may be
** dropped, for example, to see the filtered results of a query
** followed by the unfiltered results.
*/
#ifdef OPTIONAL_CALLS

ret=smc_drop_filter(connect2_id,db_info_view_id,filter_id);
if (ret != SMC_RET_SUCCESS) {

printf("Attempt to drop filter failed.\n");
}
ret=smc_drop_alarm(connect2_id,db_info_view_id,alarm_id);
if (ret != SMC_RET_SUCCESS) {

printf("Attempt to drop alarm failed.\n");
}

#endif
/*
** Get another time stamp before disconnecting. To do this,
** do a refresh on the first connection again and only display
** the time stamp data returned.
*/

if (connect1_id != CONNECT_NONEXISTENT) {
ret=smc_refresh_ex(connect1_id,0);

A sample Monitor Client Library program

32 Monitor Client Library

if (ret != SMC_RET_SUCCESS) {
printf("refresh call failed on first connect ID.\n");

}
else { /*Check row count even though

only one row is expected. If
no rows are returned,
get_dataitem_value calls
will return errors.*/

ret=smc_get_row_count(connect1_id,
server_view_id,
#_of_rows);

if (ret != SMC_RET_SUCCESS){
printf("Get row count call on first connection \

failed.\n");
}
else {

if (num_of_rows > 0){
ret=smc_get_dataitem_value(connect1_id,

server_view_id,
&server_info_view[2], /*In this case

we are only
interested in
the third data
item*/

0, /*Only one row of data
is returned for this
particular view, so the
value for row is hard-
coded in this case.*/

&server_data[2]
);

printf("Date and time on conclusion of monitoring:\
%s\n",server_data[2].stringValue);

free(server_data[2].stringValue);
/*Application must free string memory returned
by library*/

} /*End if row of data returned*/
} /*End case get_row_count successful*/

} /*End case refresh successful*/
} /*End case connection exists*/

/*

** Close and deallocate the connection.
*/

CHAPTER 1 Getting Started with Monitor Client Library

Programmer’s Guide 33

Code for closing and
deallocating
connections

For commentary, see “Step 7: closing and deallocating connections” on page
12.

/*
** Cleanup. This consists of closing all connections, then
** de-allocating them. Alternatively, connections can be re-used.
*/

ret=smc_close(connect1_id,
SMC_CLOSE_REQUEST /*Close only if no

outstanding commands
(only close request type
currently supported)*/

);
if (ret != SMC_RET_SUCCESS) {

printf("Attempt to close first connection failed. \
Return code is %d.\n",ret);

}
ret=smc_close(connect2_id,SMC_CLOSE_REQUEST);
if (ret != SMC_RET_SUCCESS) {

printf("Attempt to close second connection failed. \
Return code is %d.\n",ret);

}
/*
** Connections can be re-used at this point, for example, to
** connect to different servers. However, we de-allocate them.
*/

ret=smc_connect_drop(connect1_id);
if (ret != SMC_RET_SUCCESS){

printf("Attempt to drop first connection failed. \
Return code is %d.\n",ret);

}
ret=smc_connect_drop(connect2_id);
if (ret != SMC_RET_SUCCESS){

printf("Attempt to drop second connection failed. \
Return code is %d.\n",ret);

}
return(SMC_RET_SUCCESS);

} /*End main*/
/*
** Callback functions

Code for defining error
handling

For commentary, see “Step 1: Defining error handling” on page 5.

*/
SMC_VOID errorCallback(

SMC_CONNECT_ID connectID,

A sample Monitor Client Library program

34 Monitor Client Library

SMC_COMMAND_ID commandID, /*Value internal to Monitor
Client Library*/

SMC_VOIDP userDataHandle /*User-defined pointer. Set by
smc_connect_propscall*/

)
{

SMC_SIZET ret;
SMC_VALUE_UNION errorInfo; /*Used for getting information

from smc_get_command_info
function call*/

SMC_SIZET returned_msg_length;
printf ("Inside new error callback.\n");

/*
** Use smc_get_command_info function call to get information
** from error and alarm callbacks.
*/

ret=smc_get_command_info(connectID,
commandID,
SMC_INFO_ERR_MAPSEVERITY, /*Information

requested about
command*/

&errorInfo, /*Where information
returned about
command is placed*/

NULL /*Value is numeric
so length of returned

data not needed*/
);

if (ret != SMC_RET_SUCCESS){
printf("get_command_info call requesting error map \

severity failed. Error returned is: %d\n",ret);
}

else{
printf("Monitor Client Library error severity level is: \

%d\n",errorInfo.sizetValue);
}
ret=smc_get_command_info(connectID,

commandID,
SMC_INFO_ERR_MSG,
&errorInfo,
&returned_msg_length /*Find string

length */

);
if (ret != SMC_RET_SUCCESS){
printf("get_command_info call requesting error message \

CHAPTER 1 Getting Started with Monitor Client Library

Programmer’s Guide 35

failed. Error returned is: %d\n",ret);
}
else{

printf("Error message text is: %s\n",errorInfo.stringValue);
free(errorInfo.stringValue);
/*Application is responsible for freeing string buffer
memory allocated by library*/

}
ret=smc_get_command_info(connectID,

commandID,
SMC_INFO_ERR_NUM,
&errorInfo,
NULL
);

if (ret != SMC_RET_SUCCESS){
printf("get_command_info call requesting error number \

failed. Error returned is: %d\n",ret);
}
else{

printf("Error number is: %d\n",errorInfo.sizetValue);
}
ret=smc_get_command_info(connectID,

commandID,
SMC_INFO_ERR_SEVERITY,
&errorInfo,
NULL
);

if (ret != SMC_RET_SUCCESS){
printf("get_command_info call requesting error severity \

failed. Error returned is: %d\n",ret);
}
else{

printf("Error severity level is: %d\n",errorInfo.sizetValue);
}
ret=smc_get_command_info(connectID,

commandID,
SMC_INFO_ERR_SOURCE,
&errorInfo,
NULL
);

if (ret != SMC_RET_SUCCESS){
printf("get_command_info call requesting error source \

failed. Error returned is: %d\n",ret);
}
else{

printf(" Error source is: %d\n",errorInfo.sizetValue);

A sample Monitor Client Library program

36 Monitor Client Library

}
ret=smc_get_command_info(connectID,

commandID,
SMC_INFO_ERR_STATE,
&errorInfo,
NULL
);

if (ret != SMC_RET_SUCCESS){
printf("get_command_info call requesting state failed. \

Error returned is: %d\n",ret);
}
else{
printf(" Error state is: %d\n",errorInfo.sizetValue);

}
/*
** Demonstrate use of userDataHandle. This value was set as a
** connection property for the connection in the main program and
** is passed to this function.
*/

if (userDataHandle != NULL){
printf("Connection on which error occurred is \

%s.\n",userDataHandle);
}

} /*End errorCallback */
/*Alarm callback*/
SMC_VOID alarmCallback(

SMC_CONNECT_ID connectID,
SMC_COMMAND_ID commandID, /*Value internal to Monitor

Client Library*/
SMC_VOIDP userDataHandle
)

{
#define MSG_BUFFER_LENGTH 80

SMC_SIZET ret;
SMC_VALUE_UNION alarmInfo; /*Union into which requested

data is placed*/
SMC_SIZET returned_msg_length;
printf ("Alarm callback triggered.\n");

/*
** Use smc_get_command_info function call to get information
** from error and alarm callbacks.
*/

ret=smc_get_command_info(connectID,
commandID,
SMC_INFO_ALARM_ALARMID,
&alarmInfo,

CHAPTER 1 Getting Started with Monitor Client Library

Programmer’s Guide 37

NULL
);

if (ret != SMC_RET_SUCCESS){
printf("get_command_info call failed. \

Error returned is: %d",ret);
}
else{

printf("Alarm ID is: %d\n",alarmInfo.sizetValue);
}

/*
** This demonstrates the use of the SMC_INFO_ALARM_VALUE_DATATYPE
** information that might be useful in a generic alarm callback
** function.
*/

ret=smc_get_command_info(connectID,
commandID,
SMC_INFO_ALARM_VALUE_DATATYPE,
&alarmInfo,
NULL
);

if (ret != SMC_RET_SUCCESS){
printf("get_command_info call failed. \

Error returned is: %d",ret);
}
else{

switch(alarmInfo.intValue){
case SMC_DI_TYPE_INT:

ret=smc_get_command_info(connectID,
commandID,
SMC_INFO_ALARM_CURRENT_VALUE,
&alarmInfo,
NULL
);

if (ret != SMC_RET_SUCCESS){
printf("get_command_info call failed. \

Error returned is: %d",ret);
}
else {

printf("Current value of alarmed data item is:\
%d.\n",alarmInfo.intValue);

}
break;

case SMC_DI_TYPE_LONG:
ret=smc_get_command_info(connectID,

commandID,
SMC_INFO_ALARM_CURRENT_VALUE,

A sample Monitor Client Library program

38 Monitor Client Library

&alarmInfo,
NULL
);

if (ret != SMC_RET_SUCCESS){
printf("get_command_info call failed. \

Error returned is: %d",ret);
}
else {
printf("Current value of alarmed data item is: \

%d.\n",alarmInfo.longValue);
}
break;
case SMC_DI_TYPE_DOUBLE:

ret=smc_get_command_info(connectID,
commandID,
SMC_INFO_ALARM_CURRENT_VALUE,
&alarmInfo,
NULL
);

if (ret != SMC_RET_SUCCESS){
printf("get_command_info call failed. Error returned is: %d",ret);

}
else {
printf("Current value of alarmed data item is: \

%f.\n",alarmInfo.doubleValue);
}
break;
default:
printf("Invalid value returned for datatype of \

current alarm value.\n");
break;
} /*End switch*/

}
ret=smc_get_command_info(connectID,

commandID,
SMC_INFO_ALARM_ROW,
&alarmInfo,
NULL
);

if (ret != SMC_RET_SUCCESS){
printf("get_command_info call failed. \

Error returned is: %d",ret);
}
else{
printf("Row of data which triggered alarm is: \

%d\n",alarmInfo.sizetValue);

CHAPTER 1 Getting Started with Monitor Client Library

Programmer’s Guide 39

}
ret=smc_get_command_info(connectID,

commandID,
SMC_INFO_ALARM_VALUE_DATATYPE,
&alarmInfo,
NULL
);

if (ret != SMC_RET_SUCCESS){
printf("get_command_info call failed. \

Error returned is: %d",ret);
}
else{

switch(alarmInfo.intValue){
case SMC_DI_TYPE_INT:

ret=smc_get_command_info(connectID,
commandID,
SMC_INFO_ALARM_THRESHOLD_VALUE,
&alarmInfo,
NULL
);

if (ret != SMC_RET_SUCCESS){
printf("get_command_info call failed. \

Error returned is: %d",ret);
}
else {

printf("Value of data item exceeded alarm-triggering \
value of: %d.\n",alarmInfo.intValue);

}
break;

case SMC_DI_TYPE_LONG:
ret=smc_get_command_info(connectID,

commandID,
SMC_INFO_ALARM_THRESHOLD_VALUE,
&alarmInfo,
NULL
);

if (ret != SMC_RET_SUCCESS){
printf("get_command_info call failed. \

Error returned is: %d",ret);
}
else {

printf("Value of data item exceeded alarm-triggering \
value of: %d.\n",alarmInfo.longValue);

}
break;

case SMC_DI_TYPE_DOUBLE:

A sample Monitor Client Library program

40 Monitor Client Library

ret=smc_get_command_info(connectID,
commandID,
SMC_INFO_ALARM_THRESHOLD_VALUE,
&alarmInfo,
NULL
);

if (ret != SMC_RET_SUCCESS){
printf("get_command_info call failed. \

Error returned is: %d",ret);
}
else {
printf("Value of data item exceeded alarm-triggering\

value of: %f.\n",alarmInfo.doubleValue);
}
break;
default:
printf("Invalid value returned for datatype of \

THRESHOLD alarm value.\n");
break;
} /*End switch*/

}
ret=smc_get_command_info(connectID,

commandID,
SMC_INFO_ALARM_TIMESTAMP,
&alarmInfo,
&returned_msg_length
);

if (ret != SMC_RET_SUCCESS){
printf("get_command_info call failed. \

Error returned is: %d",ret);
}
else{
printf("Time when alarm was triggered is: \

%s\n",alarmInfo.stringValue);
free(alarmInfo.stringValue); /*Application is responsible

for freeing string buffer memory
allocated by library.*/

}

ret=smc_get_command_info(connectID,
commandID,
SMC_INFO_ALARM_VIEWID,
&alarmInfo,
NULL
);

if (ret != SMC_RET_SUCCESS){

CHAPTER 1 Getting Started with Monitor Client Library

Programmer’s Guide 41

printf("get_command_info call failed. \
Error returned is: %d",ret);

}
else{

printf("ID of view which triggered alarm is: \
%d.\n",alarmInfo.sizetValue);

}
} /*End newAlarmCallback*/

A sample Monitor Client Library program

42 Monitor Client Library

Programmer’s Guide 43

C H A P T E R 2 Data Items and Statistical Types

This chapter contains information data items and statistical types.

Overview
A data item is a particular piece of performance data that can be obtained
by using Monitor Client Library. A statistical type specifies the
calculations to be performed and the duration for which to report the data
collected by the data item.

This chapter describes the types of data items and statistical types. It also
describes each data item and its characteristics.

Result and key data items
Data items are classified as keys or results:

• A key data item refines the amount of detail in a view and usually
results in additional rows returned when a view is refreshed. With the
inclusion of each successive key, envision adding the word “per” to a
view definition. For example, start with the Page I/O result data item.
Refine the granularity by adding the Database key data item, Page
I/Os “per” Database. Further refine the granularity by adding the
Object key data item, Page I/Os “per” Database “per” Object.

Topics Page
Overview 43

Result and key data items 43

Data items and views 44

Data item definitions 46

Data items and views

44 Monitor Client Library

• A result data item returns performance data at the level of detail
determined by the key data items in a view. If no key data items are
specified, only one row of data is returned.

Note A data item’s designation as a result or key is a characteristic of the data
item and is independent of the statistical type associated with the data item in
a view.

Data items and views
A view usually contains a mix of key and result data items. This mixture of
keys and results provides flexibility in determining the amount of detail of the
data to be returned. The exception is server-wide data, such as transaction or
network activity data. For server-wide data, no key data items are specified and
only one row of data is returned.

Table 2-1 shows examples of data returned by views.

Table 2-1: Examples of data returned by views

View defined with Returns

SMC_NAME_PAGE_IO page I/Os for the whole server

Row results:
Page I/O

145

SMC_NAME_SPID,
SMC_NAME_LOGIN_NAME,
SMC_NAME_PAGE_IO

(where SPID is a key data item)

page I/O per process

Row results:
SPID Login Name Page I/O

3 sa 45
5 joe 100

SMC_NAME_SPID,
SMC_NAME_DB_ID,
SMC_NAME_OBJ_ID,
SMC_NAME_DB_NAME,
SMC_NAME_OBJ_NAME, and
SMC_NAME_PAGE_IO (where
SMC_NAME_SPID,
SMC_NAME_DB_ID, and
SMC_NAME_OBJID are key data
items)

page I/O per database table per process

Row results:
SPID DBID ObjID DBName ObjName PageIO
--
1 5 208003772 pubs2 titles 10
1 5 336004228 pubs2 blurbs 5
5 5 22003430 pubs2 sales 100

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 45

Rows with no data versus no rows in views
When there is no activity to report, some data items cause an empty row (that
is, a row with zero values for result data items) to appear in a view, and other
data items cause the row to be omitted. The rules controlling whether empty
rows appear in a view are:

• Server-level data items always return a row, even when there is no activity
to report.

• Views that contain the key data item SMC_NAME_SPID or
SMC_NAME_APPLICATION_NAME report only on processes that are
active as of the end of the sample period.

• Views that contain the key data items SMC_NAME_OBJ_ID or
SMC_NAME_ACT_STP_ID omit the row when there is no activity to
report during the sample period.

• Views that contain keys other than those listed in the previous bullets
return rows when there is no activity.

Server-level status
Some data items are available only at the server level. Views with server-level
data items contain only result data items and provide performance data
summarized over Adaptive Server.

Combining data items
Data items cannot be combined indiscriminately. The absence or presence of a
key data item in a view determines which other data items are allowed in the
view.

If a view contains a key data item, all result data items in the view must be valid
for the key data item. Also, for each result data item in a view, all required keys
for that result data item must be in the view.

If a view does not contain a key data item, it can include any data item that does
not require a key.

Data item definitions

46 Monitor Client Library

Result and key combinations
In some cases, if you use an optional key data item, you must also use one or
more others. In the data item descriptions in this chapter, data items that have
this requirement are grouped with the other required data items in brackets and
separated by a plus sign (+).

Not all result data items require a key data item. If a view contains only result
data items, by default the summary is at the server level. The result data items
that have only optional keys can be used with server-level data items when no
key data item is included in the view.

To combine various result data items within a view, match common key data
items.

Connection summaries
Some views consume Monitor Server connection summaries. For information
about Monitor Server connection summaries, see the Adaptive Server
Enterprise Monitor Server User’s Guide.

Current statement and application name data items
To get data for a current statement data item (SMC_NAME_CUR_STMT_x)
or SMC_NAME APPLICATION NAME, the Monitor Client application must
connect to the Monitor Server and create the view before you start the
application you are monitoring.

Data item definitions
This section lists data items in alphabetical order with the following
information:

• Description

• Server-level status

• Result or key designation

• For result data items, required keys and optional keys

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 47

• For key data items, result data items that require the key data item and
result data items that can use the key data item, but do not require it

• Version compatibility: Adaptive Server 11.5 and later

• Valid statistical types

The valid statistical types are as follows:

• SMC_STAT_VALUE_SAMPLE

• SMC_STAT_VALUE_SESSION

• SMC_STAT_RATE_SAMPLE

• SMC_STAT_RATE_SESSION

• SMC_STAT_AVG_SAMPLE

• SMC_STAT_AVG_SESSION

The possible datatypes for a data item are:

• LONG – long

• ENUMS – integer

• DOUBLE – double

• CHARP – character

• DATIM – date/time

For more information about enumerated types, see the Appendix, “Datatypes
and Structures.”

Note Not all statistical types are available for each data item.

You cannot use SMC_NAME_SPID and
SMC_NAME_APPLICATION_NAME in the same view.

Deciphering the names of data items
The syntax of a data item’s name is an abbreviation of a description of the
information it reports. All data items start with SMC_NAME. The remaining
components of the name are either English words, abbreviations, or both. The
abbreviations and their meanings are:

• ACT – active

Data item definitions

48 Monitor Client Library

• APP – application

• CNT – count (number of)

• CUR – current

• DATIM – date and time

• DB – database

• DEV – device

• ID – identification number

• IMMED – immediate

• IO – input/output (page reads and writes)

• KPID – a persistent process ID

• MAX – maximum

• MEM – memory

• NET – network

• NUM – number

• OBJ – database object

• PCT – percent

• PKT – packet

• PROC – process

• RCVD – received

• REF – referenced

• SPID – server process ID

• STMT – statement

• STP – stored procedure

• XACT – transaction

The data items described in Historical Server User’s Guide are equivalent to
these data items, but use a natural language naming convention.

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 49

SMC_NAME_ACT_STP_DB_ID
Description Reports the database identification number of the active stored procedure.

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

Result data items for
which this key is
optional

Statistic types and
datatypes

SMC_NAME_ACT_STP_DB_NAME
Description Reports the database name of the active stored procedure.

Version compatibility 11.0 and later

Data item type Result

SMC_NAME_ACT_ STP_DB_NAME

SMC_NAME_ACT_ STP_NAME

SMC_NAME_ACT_ STP_OWNER_NAME

SMC_NAME_STP_CPU_TIME

SMC_NAME_STP_ELAPSED_TIME

SMC_NAME_STP_EXECUTION_CLASS

SMC_NAME_STP_LINE_TEXT

SMC_NAME_STP_NUM_TIMES_EXECUTED

SMC_NAME_LOCKS_GRANTED_IMMED

SMC_NAME_LOCKS_GRANTED_WAITED

SMC_NAME_LOCKS_NOT_GRANTED

SMC_NAME_PAGE_INDEX_LOGICAL_READ

SMC_NAME_PAGE_INDEX_PHYSICAL_READ

SMC_NAME_PAGE_HIT_PCT

SMC_NAME_PAGE_IO

SMC_NAME_PAGE_LOGICAL_READ

SMC_NAME_PAGE_PHYSICAL_READ

SMC_NAME_PAGE_WRITE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

Data item definitions

50 Monitor Client Library

Server level No

Required keys SMC_NAME_ACT_STP_DB_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_ACT_STP_ID
Description Reports the identification number of the active stored procedure.

Version compatibility 11.0 and later

Data item type Key

Server level No

Required keys SMC_NAME_ACT_STP_DB_ID

Result data items that
require this key

Result data items for
which this key is
optional

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

SMC_NAME_ACT_ STP_NAME

SMC_NAME_ACT_ STP_OWNER_NAME

SMC_NAME_STP_CPU_TIME

SMC_NAME_STP_ELAPSED_TIME

SMC_NAME_STP_EXECUTION_CLASS

SMC_NAME_STP_LINE_TEXT

SMC_NAME_STP_NUM_TIMES_EXECUTED

SMC_NAME_LOCKS_GRANTED_IMMED

SMC_NAME_LOCKS_GRANTED_WAITED

SMC_NAME_LOCKS_NOT_GRANTED

SMC_NAME_PAGE_INDEX_LOGICAL_READ

SMC_NAME_PAGE_INDEX_PHYSICAL_READ

SMC_NAME_PAGE_HIT_PCT

SMC_NAME_PAGE_IO

SMC_NAME_PAGE_LOGICAL_READ

SMC_NAME_PAGE_PHYSICAL_READ

SMC_NAME_PAGE_WRITE

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 51

Statistic types and
datatypes

SMC_NAME_ACT_STP_NAME
Description Reports the name of the active stored procedure.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_ACT_STP_DB_ID, SMC_NAME_ACT_STP_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_ACT_STP_OWNER_NAME
Description Reports the name of the owner of the active stored procedure.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_ACT_STP_DB_ID, SMC_NAME_ACT_STP_ID

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

Data item definitions

52 Monitor Client Library

SMC_NAME_APPLICATION_NAME
Description Reports the name of each application for which other statistics are being

accumulated. Views that contain SMC_NAME_APPLICATION_NAME only
report on processes that are active as of the end of the sample period.

SMC_NAME_APPLICATION_NAME is mutually exclusive with
SMC_NAME_SPID in a view.

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

Result data items for
which this key is
optional

Statistic types and
datatypes

SMC_NAME_APP_EXECUTION_CLASS
Description Reports the configured execution class, if any, for a given application name.

The name is returned in one of the following formats:

• If the application is bound to the execution class only with scope NULL,
the name of the execution class is returned.

SMC_NAME_APP_EXECUTION_CLASS

SMC_NAME_CPU_PCT

SMC_NAME_CPU_TIME

SMC_NAME_LOCKS_GRANTED_IMMED

SMC_NAME_LOCKS_GRANTED_WAITED

SMC_NAME_LOCKS_NOT_GRANTED

SMC_NAME_NUM_PROCESSES

SMC_NAME_PAGE_INDEX_LOGICAL_READ

SMC_NAME_PAGE_INDEX_PHYSICAL_READ

SMC_NAME_PAGE_LOGICAL_READ

SMC_NAME_PAGE_PHYSICAL_READ

SMC_NAME_PAGE_WRITE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 53

• If the application is bound to the execution class with a scope of NULL
and a scope of one or more logins, an asterisk (*) is appended to the name
of the execution class.

• If the application is bound to the execution class only with a scope of one
or more logins, an asterisk is returned.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_APPLICATION_NAME

Optional keys None

Statistic types and
datatypes

SMC_NAME_BLOCKING_SPID
Description Reports the identification number of the process that holds a lock that the

process indicated by the SMC_NAME_SPID data item is waiting for. If a
process is not blocked, the blocking SPID is zero.

Version Compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID, SMC_NAME_DB_ID, SMC_NAME_OBJ_ID,
SMC_NAME_LOCK_STATUS

Optional keys SMC_NAME_LOCK_TYPE, SMC_NAME_PAGE_NUM

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

Data item definitions

54 Monitor Client Library

SMC_NAME_CONNECT_TIME
Description Reports the time elapsed (in seconds) since the process was started. If the

process was active before you began monitoring it, connect time is the time you
have monitored this process.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CPU_BUSY_PCT
Description Reports the percentage of the time when Adaptive Server is in a busy state.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_ENGINE_NUM

Statistic types and
datatypes

SMC_NAME_CPU_PCT
Description Reports the percentage of time that a process or the set of processes running a

given application was in the running state of the time that all processes were in
the running state.

Version compatibility 11.0 and later

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 55

Data item type Result

Server level No

Required keys SMC_NAME_SPID or SMC_NAME_APPLICATION_NAME

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

Optional keys SMC_NAME_ENGINE_NUM

Statistic types and
datatypes

SMC_NAME_CPU_TIME
Description At server level (with no keys), reports the total CPU “busy” time on the server.

When used with keys, reports on how much of that busy time was used by each
process, application, or engine.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_ENGINE_NUM, SMC_NAME_SPID or
SMC_NAME_APPLICATION_NAME

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

Data item definitions

56 Monitor Client Library

SMC_NAME_CPU_YIELD
Description Reports the number of times that Adaptive Server yielded to the operating

system.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required key None

Optional keys SMC_NAME_ENGINE_NUM

Statistic types and
datatypes

SMC_NAME_CUR_APP_NAME
Description Reports the name of the application that is executing on a particular process.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_ENGINE
Description Reports the number of the Adaptive Server engine on which a process is

running.

Version compatibility 11.0 and later

Data item type Result

Server level No

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 57

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_EXECUTION_CLASS
Description Reports the name of the execution class under which a process is currently

running.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_PROC_STATE
Description Reports the current state of a process. The possible states are:

• None

• Alarm Sleep

• Background

• Bad Status

• Infected

• Lock Sleep

• Received Sleep

• Remote I/O

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

Data item definitions

58 Monitor Client Library

• Runnable

• Running

• Send Sleep

• Sleeping

• Stopped

• Sync Sleep

• Terminating

• Yielding

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

Enum SMC_PROC_STATE

SMC_NAME_CUR_STMT_ACT_STP_DB_ID
Description Reports the database ID of the stored procedure (including triggers, a special

kind of stored procedure) that contains the currently executing SQL statement
for a particular process. If the currently executing SQL statement is not
contained in a stored procedure, this ID is zero.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

ENUMS

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 59

Statistic types and
datatypes

SMC_NAME_CUR_STMT_ACT_STP_DB_NAME
Description Reports the database name of the stored procedure (including triggers, a special

kind of stored procedure) that contains the currently executing SQL statement
for a particular process. If the currently executing SQL statement is not
contained in a stored procedure, this name is “**NoDatabase**”.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_ACT_STP_ID
Description Reports the ID of the stored procedure (including triggers, a special kind of

stored procedure) that contains the currently executing SQL statement for a
particular process. If the currently executing SQL statement is not contained in
a stored procedure, this ID is zero.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

Data item definitions

60 Monitor Client Library

Statistic types and
datatypes

SMC_NAME_CUR_STMT_ACT_STP_NAME
Description Reports the name of the stored procedure (including triggers, a special kind of

stored procedure) that contains the currently executing SQL statement for a
particular process. If the currently executing SQL statement is not contained in
a stored procedure, this name is “**NoObject**”.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_ACT_STP_OWNER_NAME
Description Reports the owner name of the stored procedure (including triggers, a special

kind of stored procedure) that contains the currently executing SQL statement
for a particular process. If the currently executing SQL statement is not
contained in a stored procedure, this name is “**NoOwner**”.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 61

Statistic types and
datatypes

SMC_NAME_CUR_STMT_ACT_STP_TEXT
Description Reports the text of a particular stored procedure (including triggers, a special

kind of stored procedure) being executed for a particular process. If both
CUR_STMT_ACT_STP_DB_ID is equal to 0 and
CUR_STMT_ACT_STP_ID is equal to 0 then a stored procedure is not
currently executing and this text is a null-terminated empty string ("").

If the text is not available (because this stored procedure was compiled and its
text was discarded, or because the text is stored in an encrypted format), then
this text is a null-terminated empty string ("").

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_BATCH_ID
Description Reports the ID of a particular query batch being executed for a particular

process.

Version compatibility 11.5 and later

Data item type Result

Required keys SMC_NAME_SPID

Optional keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

Data item definitions

62 Monitor Client Library

Statistic types and
datatypes

SMC_NAME_CUR_STMT_BATCH_TEXT
Description Reports the text of a particular query batch being executed for a particular

process. This text can only be an initial substring of the complete text in a query
batch. The maximum amount of text stored in this field is determined by the
Adaptive Server configuration option max SQL text monitored and can be
monitored using SMC_NAME_CUR_STMT_BATCH_TEXXT ENABLED.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_BATCH_TEXT_ENABLED
Description Reports whether Adaptive Server is saving the SQL text of the currently

executing query batches, and if so, how much.

Value of 0 = saving SQL text disabled.

Value of 1 or more = maximum number of bytes of batch text per server process
that can be saved.

Version compatibility 11.5 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 63

Statistic types and
datatypes

SMC_NAME_CUR_STMT_CONTEXT_ID
Description Reports the ID that uniquely identifies a stored procedure invocation within a

particular query batch being executed for a particular process.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_CPU_TIME
Description Reports the amount of time (in seconds) that the currently executing SQL

statement has spent in the running state.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes:

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

Data item definitions

64 Monitor Client Library

SMC_NAME_CUR_STMT_ELAPSED_TIME
Description Reports the amount of time (in seconds) that the currently executing SQL

statement has been running.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_LINE_NUM
Description Reports the number of the line (within a query batch or stored procedure) that

contains the beginning of the currently executing SQL statement for a
particular process. The currently executing SQL statement is in the query batch
if CUR_STMT_ACT_STP_DB_ID is equal to 0 and
CUR_STMT_ACT_STP_ID is equal to 0. Otherwise, the currently executing
SQL statement is in the stored procedure uniquely identified by these two IDs.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 65

SMC_NAME_CUR_STMT_LOCKS_GRANTED_IMMED
Description Reports the number of lock requests by the currently executing SQL statement

that were granted immediately or were not needed (because sufficient locking
was already held by the requestor).

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_LOCKS_GRANTED_WAITED
Description Reports the number of lock requests by the currently executing SQL statement

that were granted after waiting.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_LOCKS_NOT_GRANTED
Description Reports the number of lock requests by the currently executing SQL statement

that were denied.

Version compatibility 11.5 and later

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

66 Monitor Client Library

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_NUM
Description Reports the number of the statement (appearing in a query batch or stored

procedure) that is the currently executing SQL statement for a particular
process. The currently executing SQL statement is in the query batch if both
CUR_STMT_ACT_STP_DB_ID is equal to 0 and
CUR_STMT_ACT_STP_ID is equal to 0. Otherwise, the currently executing
SQL statement is in the stored procedure uniquely identified by these two IDs.

A value of zero indicates partial data for the currently executing SQL statement
(that is, this SQL statement began executing before monitoring began.
Performance metrics are available but numbers reflect only the time period
since the start of monitoring).

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_PAGE_IO
Description Reports the number of combined logical page reads and page writes

accumulated by the currently executing SQL statement.

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 67

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_PAGE_LOGICAL_READ
Description Reports the number of data page reads (satisfied from cache or from device

reads) accumulated by the currently executing SQL statement.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_PAGE_PHYSICAL_READ
Description Reports the number of data page reads that could not be satisfied from the data

cache, accumulated by the currently executing SQL statement.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

68 Monitor Client Library

Statistic types and
datatypes

SMC_NAME_CUR_STMT_PAGE_WRITE
Description Reports the number of data pages written to a database device, accumulated by

the currently executing SQL statement.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_QUERY_PLAN_TEXT
Description Reports the text of the query plan for a particular query being executed for a

particular connection.

If the text is not available (because Adaptive Server has removed this plan from
its catalog of query plans), then this text is a null-terminated empty string ("").

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 69

SMC_NAME_CUR_STMT_START_TIME
Description Reports the date and time, in the time zone of Adaptive Server, when the

currently executing SQL statement began running.

If this SQL statement began running before monitoring began, then this is the
date and time that activity was first encountered for this statement.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_CUR_STMT_TEXT_BYTE_OFFSET
Description Reports the byte offset to the beginning of a statement within the query batch

or stored procedure being executed for a particular process. If both
CUR_STMT_ACT_STP_DB_ID and CUR_STMT_ACT_STP_ID are equal
to 0, then the statement is the currently executing SQL statement in the query
batch. Otherwise, the statement is the currently executing SQL statement is in
the stored procedure uniquely identified by these two IDs (above).

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DATM

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

Data item definitions

70 Monitor Client Library

SMC_NAME_DATA_CACHE_CONTENTION
Description Reports the fraction of the requests for a data cache’s spinlock that were forced

to wait (spinlock_waits divided by spinlock_requests).

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_DATA_CACHE_EFFICIENCY
Description Reports the number of cache hits per second per megabyte of a particular data

cache.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_DATA_CACHE_HIT
Description Reports the number of times a page read was satisfied from a particular data

cache.

Version compatibility 11.0 and later

Data item type Result

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 71

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_DATA_CACHE_HIT_PCT
Description Reports the fraction of the page reads satisfied, which is computed from the

following formula:

cache_hits / (cache_hits + cache_misses) * 100

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

Note When SMC_NAME_DATA_CACHE_MISS overstates the number of
physical page reads, SMC_NAME_DATA_CACHE_HIT_PCT understates
the percentage of cache hits.

SMC_NAME_DATA_CACHE_ID
Description Reports the ID of a data cache. Tables or indexes or both can be bound to a

specific data cache, or all objects in a database can be bound to the same data
cache. No object can be bound to more than one data cache.

Version compatibility 11.0 and later

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

Data item definitions

72 Monitor Client Library

Data item type Key

Server level No

Result data items that
require this key

Result data items for
which this key is
optional

SMC_NAME_DATA_CACHE_REUSE_DIRTY

Statistic types and
datatypes

SMC_NAME_DATA_CACHE_LARGE_IO_DENIED
Description Reports the number of times the Adaptive Server buffer manager did not satisfy

requests (of the optimizer) to load data into a buffer in this data cache by
fetching more than one contiguous page from disk at a time.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

SMC_NAME_DATA_CACHE_CONTENTION

SMC_NAME_DATA CACHE_EFFICIENCY

SMC_NAME_DATA_CACHE_HIT

SMC_NAME_DATA_CACHE_HIT_PCT

SMC_NAME_DATA_CACHE_LARGE_IO_DENIED

SMC_NAME_DATA_CACHE_LARGE_IO_PERFORMED

SMC_NAME_DATA_CACHE_LARGE_IO_REQUESTED

SMC_NAME_DATA_CACHE_MISS

SMC_NAME_DATA_CACHE_NAME

SMC_NAME_DATA_CACHE_PREFETCH_EFFICIENCY

SMC_NAME_DATA_CACHE_REF_AND_REUSE

SMC_NAME_DATA_CACHE_REUSE

SMC_NAME_DATA_CACHE_SIZE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 73

Statistic types and
datatypes

SMC_NAME_DATA_CACHE_LARGE_IO_PERFORMED
Description Reports the number of times the Adaptive Server buffer manager satisfied

requests (of the optimizer) to load data into a buffer in this data cache by
fetching more than one contiguous page from disk at a time.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_DATA_CACHE_LARGE_IO_REQUESTED
Description Reports the number of times the optimizer made requests (of the Adaptive

Server buffer manager) to load data into a buffer in this data cache by fetching
more than one contiguous page from disk at a time.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

74 Monitor Client Library

SMC_NAME_DATA_CACHE_MISS
Description Reports the number of times that a page read was satisfied from disk rather than

from a particular data cache.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

Note SMC_NAME_DATA_CACHE_MISS includes failed attempts to locate
pages in the data caches during page allocation. Therefore, the number of
physical page reads reported may be overstated. If this occurs, the percentage
of data cache misses reported by SMC_NAME_DATA_CACHE_HIT_PCT is
understated.

SMC_NAME_DATA_CACHE_NAME
Description Reports the name of a data cache. Tables or indexes or both can be bound to a

specific data cache, or all objects in a database can be bound to the same data
cache. No object can be bound to more than one cache.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 75

SMC_NAME_DATA_CACHE_PREFETCH_EFFICIENCY
Description Reports the ratio of pages in buffers that were both referenced and reused,

relative to all pages in buffers in a given cache that were reused.

If the ratio is large, then prefetching is effective; otherwise, prefetching is not
providing much benefit. This may suggest that a buffer pool should be
eliminated (or it may imply that a clustered index on some table is fragmented,
and that the index should be dropped and re-created).

Note SMC_NAME_DATA_CACHE_PREFETCH_EFFICIENCY ignores
buffers in the default buffer pool in each cache.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_DATA_CACHE_REUSE
Description Reports the number of pages in buffers that were reused. A large value

indicates a high rate of turnover of buffers in the cache, and suggests that a pool
may be too small. A zero value suggests that a buffer pool other than the default
buffer pool may be too large.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

Data item definitions

76 Monitor Client Library

Statistic types and
datatypes

SMC_NAME_DATA_CACHE_REUSE_DIRTY
Description Reports the number of times that a buffer that was reused had changes that

needed to be written. A non-zero value indicates that the wash size is too small.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_DATA_CACHE_REF_AND_REUSE
Description Reports the number of pages in buffers that were both referenced and reused.

This count is employed when determining the efficiency of prefetching buffers
(see SMC_NAME_DATA_CACHE_PREFETCH_EFFICIENCY).

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 77

SMC_NAME_DATA_CACHE_SIZE
Description Reports the size of a data cache in megabytes.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA_CACHE_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_DB_ID
Description Reports the identification number of the database.

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

Result data items for
which this key is
optional

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE

SMC_NAME_BLOCKING_SPID

SMC_NAME_DB_NAME

SMC_NAME_DEMAND_LOCK

SMC_NAME_LOCKS_BEING_BLOCKED_CNT

SMC_NAME_OBJ_NAME

SMC_NAME_OBJ_TYPE

SMC_NAME_OWNER_NAME

SMC_NAME_TIME_WAITED_ON_LOCK

SMC_NAME_LOCKS_GRANTED_IMMED

SMC_NAME_LOCKS_GRANTED_WAITED

SMC_NAME_LOCKS_NOT_GRANTED

SMC_NAME_PAGE_INDEX_LOGICAL_READ

SMC_NAME_PAGE_INDEX_PHYSICAL_READ

SMC_NAME_PAGE_HIT_PCT

Data item definitions

78 Monitor Client Library

Statistic types and
datatypes

SMC_NAME_DB_NAME
Description Reports the name of the database.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DB_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_DEADLOCK_CNT
Description Reports the number of deadlocks.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_PAGE_IO

SMC_NAME_PAGE_LOGICAL_READ

SMC_NAME_PAGE_PHYSICAL_READ

SMC_NAME_PAGE_WRITE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 79

SMC_NAME_DEMAND_LOCK
Description Reports the character string (Y or N) that indicates whether or not a lock has

been upgraded to demand lock status.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID, SMC_NAME_DB_ID, SMC_NAME_OBJ_ID,
SMC_NAME_LOCK_STATUS

Optional keys SMC_NAME_LOCK_TYPE, SMC_NAME_PAGE_NUM

Statistic types and
datatypes

SMC_NAME_DEV_HIT
Description Reports the number of times access to a device was granted.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_DEV_NAME

Statistic types and
datatypes

SMC_NAME_DEV_HIT_PCT
Description Reports the fraction of device requests that were granted, which is computed

by dividing SMC_NAME_DEV_HIT into the result of
SMC_NAME_DEV_MISS multiplied by 100.

Version compatibility 11.0 and later

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

80 Monitor Client Library

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_DEV_NAME

Statistic types and
datatypes

SMC_NAME_DEV_IO
Description Reports the total of device reads and device writes.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_DEV_NAME

Statistic types and
datatypes

SMC_NAME_DEV_MISS
Description Reports the number of times that access to a device had to wait.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_DEV_NAME

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 81

Statistic types and
datatypes

SMC_NAME_DEV_NAME
Description Reports the name of each database device.

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

None

Result data items for
which this key is
optional

Statistic types and
datatypes

SMC_NAME_DEV_READ
Description Reports the number of reads made from a database device.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_DEV_NAME

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

SMC_NAME_DEV_HIT

SMC_NAME_DEV_HIT_PCT

SMC_NAME_DEV_IO

SMC_NAME_DEV_MISS

SMC_NAME_DEV_READ

SMC_NAME_DEV_WRITE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

Data item definitions

82 Monitor Client Library

Statistic types and
datatypes

SMC_NAME_DEV_WRITE
Description Reports the number of writes made to a database device.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_DEV_NAME

Statistic types and
datatypes

SMC_NAME_ELAPSED_TIME
Description Reports the time increment, in seconds, either from one data refresh to the next

(sample) or from the creation of the view to the present session.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 83

SMC_NAME_ENGINE_NUM
Description Reports the number of an Adaptive Server engine.

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

None

Result data items for
which this key is
optional

Statistic types and
datatypes

SMC_NAME_HOST_NAME
Description Reports the name of the host computer that established a particular connection

to Adaptive Server.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

SMC_NAME_CPU_BUSY_PCT

SMC_NAME_CPU_PCT

SMC_NAME_CPU_TIME

SMC_NAME_CPU_YIELD

SMC_NAME_PAGE_INDEX_LOGICAL_READ

SMC_NAME_PAGE_INDEX_PHYSICAL_READ

SMC_NAME_PAGE_HIT_PCT

SMC_NAME_PAGE_IO

SMC_NAME_PAGE_LOGICAL_READ

SMC_NAME_PAGE_PHYSICAL_READ

SMC_NAME_PAGE_WRITE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

Data item definitions

84 Monitor Client Library

Statistic types and
datatypes

SMC_NAME_KPID
Description Reports the Adaptive Server process identification number that remains unique

over long periods of time.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_LOCK_CNT
Description Reports the number of locks. This is an accumulated value.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_SPID, SMC_NAME_LOCK_TYPE,
SMC_NAME_LOCK_RESULT,
SMC_NAME_LOCK_RESULT_SUMMARY

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 85

SMC_NAME_LOCK_HIT_PCT
Description Reports the percentage of successful requests for locks.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_LOCK_RESULT
Description Reports the result of a logical lock request. Lock result values are:

• Granted immediately.

• Not needed; requestor already held a sufficient lock.

• Waited; requestor waited.

• Did not wait; lock was not available immediately and the requestor did not
want the lock request to be queued.

• Deadlock; requestor selected as deadlock victim.

• Interrupted; the lock request was interrupted by attention condition.

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

None

Result data items for
which this key is
optional

SMC_NAME_LOCK_CNT

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

Data item definitions

86 Monitor Client Library

Statistic types and
datatypes

Enum SMC_LOCK_RESULT

SMC_NAME_LOCK_RESULT_SUMMARY
Description Reports the lock results summarized at a granted or not granted level.

• The lock result summary granted includes the granted, not needed, and
waited lock results.

• The lock result summary not granted includes the did not wait, deadlock,
and interrupted lock results.

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

None

Result data items for
which this key is
optional

SMC_NAME_LOCK_CNT

Statistic types and
datatypes

Enum SMC_LOCK_RESULT_SUMMARY

SMC_NAME_LOCK_STATUS
Description Reports the current status of a lock. The lock status values are:

• Held and blocking

• Held and not blocking

• Requested and blocked

• Requested and not blocked

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

ENUMS

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

ENUMS

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 87

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

Result data items for
which this key is
optional

None

Statistic types and
datatypes

Enum SMC_LOCK_STATUS

SMC_NAME_LOCK_STATUS_CNT
Description Reports the number of locks in each lock status. This is a snapshot value.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys LOCK_STATUS

Optional keys None

Statistic types and
datatypes

SMC_NAME_BLOCKING_SPID

SMC_NAME_DEMAND_LOCK

SMC_NAME_LOCK_STATUS_CNT

SMC_NAME_LOCKS_BEING_BLOCKED_CNT

SMC_NAME_TIME_WAITED_ON_LOCK

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

ENUMS

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

88 Monitor Client Library

SMC_NAME_LOCK_TYPE
Description Reports the type of lock used by Adaptive Server. Adaptive Server protects

tables or data pages being used by active transactions by locking them.
Adaptive Server uses the following lock types:

• Exclusive table

• Shared table

• Exclusive intent

• Shared intent

• Exclusive page

• Shared page

• Update page

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

None

Result data items for
which this key is
optional

Statistic types and
datatypes

Enum SMC_LOCK_TYPE

SMC_NAME_LOCKS_BEING_BLOCKED_CNT
Description Reports the number of locks being blocked by the process that holds this

“hold_and_blocking” lock.

Version compatibility 11.0 and later

SMC_NAME_BLOCKING_SPID

SMC_NAME_DEMAND_LOCK

SMC_NAME_LOCK_CNT

SMC_NAME_LOCKS_BEING_BLOCKED_CNT

SMC_NAME_TIME_WAITED_ON_LOCK

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

ENUMS

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 89

Data item type Result

Server level No

Required keys SMC_NAME_SPID, SMC_NAME_DB_ID, SMC_NAME_OBJ_ID,
SMC_NAME_LOCK_STATUS

Optional keys SMC_NAME_LOCK_TYPE, SMC_NAME_PAGE_NUM

Statistic types and
datatypes

SMC_NAME_LOCKS_GRANTED_IMMED
Description Reports the number of locks that were granted immediately, without having to

wait for another lock to be released.

Version compatibility 11.5 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
 [SMC_NAME_DB_ID + SMC_NAME_OBJ_ID],
[SMC_NAME_CUR_STMT_ACT_STP_DB_ID +
SMC_NAME_CUR_STMT_ACT_STP_ID],
[SMC_NAME_ACT_STP_DB_ID + SMC_NAME_ACT_STP_ID]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive. If you use the
SMC_NAME_CUR_STMT_ACT_STP_DB_ID +
SMC_NAME_CUR_STMT_ACT_STP_ID key combination, you cannot use
any other keys.

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

90 Monitor Client Library

SMC_NAME_LOCKS_GRANTED_WAITED
Description Reports the number of locks that were granted after waiting for another lock to

be released.

Version compatibility 11.5 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
[SMC_NAME_DB_ID + SMC_NAME_OBJ_ID],
[SMC_NAME_CUR_STMT_ACT_STP_DB_ID +
SMC_NAME_CUR_STMT_ACT_STP_ID],
[SMC_NAME_ACT_STP_DB_ID + SMC_NAME_ACT_STP_ID]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive. If you use the
SMC_NAME_CUR_STMT_ACT_STP_DB_ID +
SMC_NAME_CUR_STMT_ACT_STP_ID key combination, you cannot use
any other keys.

Statistic types and
datatypes

SMC_NAME_LOCKS_NOT_GRANTED
Description Reports the number of locks that were requested but not granted.

Version compatibility 11.5 and later

Data item type Result

Server level Yes

Required keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 91

Optional keys SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
[SMC_NAME_DB_ID + SMC_NAME_OBJ_ID],
[SMC_NAME_CUR_STMT_ACT_STP_DB_ID +
SMC_NAME_CUR_STMT_ACT_STP_ID],
[SMC_NAME_ACT_STP_DB_ID + SMC_NAME_ACT_STP_ID]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive. If you use the
SMC_NAME_CUR_STMT_ACT_STP_DB_ID +
SMC_NAME_CUR_STMT_ACT_STP_ID key combination, you cannot use
any other keys.

Statistic types and
datatypes

SMC_NAME_LOG_CONTENTION_PCT
Description Reports the percentage of times, of the total times when a user log cache was

flushed into the transaction log, that it had to wait for the log semaphore.

A high percentage may indicate that the user log cache size should be
increased.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_LOGIN_NAME
Description Reports the login name associated with Adaptive Server processes.

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

Data item definitions

92 Monitor Client Library

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and
datatypes

SMC_NAME_MEM_CODE_SIZE
Description Reports the amount of memory in bytes allocated for Adaptive Server.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_MEM_KERNEL_STRUCT_SIZE
Description Reports the amount of memory in bytes allocated for the kernel structures.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 93

Statistic types and
datatypes

SMC_NAME_MEM_PAGE_CACHE_SIZE
Description Reports the amount of memory in bytes allocated for the page cache.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_MEM_PROC_BUFFER
Description Reports the amount of memory in bytes allocated for procedure buffers.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_MEM_PROC_HEADER
Description Reports the amount of memory in bytes allocated for procedure headers.

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

Data item definitions

94 Monitor Client Library

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_MEM_SERVER_STRUCT_SIZE
Description Reports the amount of memory in bytes allocated for the Adaptive Server

structures.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_MOST_ACT_DEV_IO
Description Reports the number of combined reads and writes against the device with the

most activity during a given time interval.

Version compatibility 11.0 and later

Server level Yes

Data item type Result

Required keys None

Optional keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 95

Statistic types and
datatypes

SMC_NAME_MOST_ACT_DEV_NAME
Description Reports the name of the device with the largest number of combined reads and

writes during a given time interval.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_NET_BYTE_IO
Description Reports the number of combined network bytes sent and received.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

96 Monitor Client Library

SMC_NAME_NET_BYTES_RCVD
Description Reports the number of network bytes received.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_NET_BYTES_SENT
Description Reports the number of network bytes sent.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_NET_DEFAULT_PKT_SIZE
Description Reports the default size of a network packet.

Type Result

Server level Yes

Required keys None

Optional keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 97

Statistic types and
datatypes

SMC_NAME_NET_MAX_PKT_SIZE
Description Reports the maximum size configured for a network packet.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_NET_PKT_SIZE_RCVD
Description Reports the average size of network packets received.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_NET_PKT_SIZE_SENT
Description Reports the average size of network packets sent.

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

Data item definitions

98 Monitor Client Library

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_NET_PKTS_RCVD
Description Reports the number of network packets received.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_NET_PKTS_SENT
Description Reports the number of network packets sent.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 99

Statistic types and
datatypes

SMC_NAME_NUM_ENGINES
Description Reports the number of engines running on Adaptive Server.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_NUM_PROCESSES
Description Reports the number of processes currently running on Adaptive Server, or, if

used with the key SMC_NAME_APPLICATION_NAME, the number of
processes currently running a given application.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_APPLICATION_NAME

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

Data item definitions

100 Monitor Client Library

SMC_NAME_OBJ_ID
Description Reports the identification number of a database object where the object

returned is either a table or a stored procedure.

Version compatibility 11.0 and later

Data item type Key

Server level No

Required keys SMC_NAME_DB_ID

Result data items that
require this key

Result data items for
which this key is
optional

Statistic types and
datatypes

If you create a view using the SMC_NAME_OBJ_ID data item, you might see
negative numbers as object IDs. Negative object IDs are an accurate reporting
of IDs as assigned by Adaptive Server.

SMC_NAME_BLOCKING_SPID

SMC_NAME_DEMAND_LOCK

SMC_NAME_LOCKS_BEING_BLOCKED_CNT

SMC_NAME_OBJ_NAME

SMC_NAME_OBJ_TYPE

SMC_NAME_OWNER_NAME

SMC_NAME_TIME_WAITED_ON_LOCK

SMC_NAME_LOCKS_GRANTED_IMMED

SMC_NAME_LOCKS_GRANTED_WAITED

SMC_NAME_LOCKS_NOT_GRANTED

SMC_NAME_PAGE_INDEX_LOGICAL_READ

SMC_NAME_PAGE_INDEX_PHYSICAL_READ

SMC_NAME_PAGE_HIT_PCT

SMC_NAME_PAGE_IO

SMC_NAME_PAGE_LOGICAL_READ

SMC_NAME_PAGE_PHYSICAL_READ

SMC_NAME_PAGE_WRITE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 101

Monitor Server reports on all activity, including activity on temporary tables
that Adaptive Server creates to perform a complex query. The object IDs that
Adaptive Server assigns to temporary tables can be positive or negative. The
object ID that was assigned by Adaptive Server is reported.

SMC_NAME_OBJ_NAME
Description Reports the name of a database object. In views that show

SMC_NAME_OBJ_NAME, the string **TempObject** is reported for
temporary tables.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_DB_ID, SMC_NAME_OBJ_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_OBJ_TYPE
Description Reports the type of database object, table, or stored procedure.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_DB_ID, SMC_NAME_OBJ_ID

Optional keys None

Statistic types and
datatypes

Enum SMC_OBJ_TYPE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

ENUMS

Data item definitions

102 Monitor Client Library

SMC_NAME_OWNER_NAME
Description Reports the owner name of the database object.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_DB_ID, SMC_NAME_OBJ_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_PAGE_HIT_PCT
Description Reports the percentage of times that a data page read could be satisfied from

cache without requiring a physical page read.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_SPID,
 [SMC_NAME_DB_ID + SMC_NAME_OBJ_ID],
[SMC_NAME_ACT_STP_DB_ID + SMC_NAME_ACT_STP_ID],
SMC_NAME_ENGINE_NUM

Statistic types and
datatypes

SMC_NAME_PAGE_INDEX_LOGICAL_READ
Description Reports the number of index page reads satisfied from cache or from device

reads.

Version compatibility 11.0 and later

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 103

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
SMC_NAME_DB_ID, SMC_NAME_OBJ_ID,
SMC_NAME_ENGINE_NUM, [SMC_NAME_ACT_STP_DB_ID +
SMC_NAME_ACT_STP_ID]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

Statistic types and
datatypes

SMC_NAME_PAGE_INDEX_PHYSICAL_READ
Description Reports the number of index page reads that could not be satisfied from the data

cache.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys None

Optional keys SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
SMC_NAME_DB_ID, SMC_NAME_OBJ_ID,
SMC_NAME_ENGINE_NUM, [SMC_NAME_ACT_STP_DB_ID +
SMC_NAME_ACT_STP_ID]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

104 Monitor Client Library

SMC_NAME_PAGE_IO
Description Reports the number of combined logical page reads and page writes.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
[SMC_NAME_DB_ID + SMC_NAME_OBJ_ID],
[SMC_NAME_ACT_STP_DB_ID + SMC_NAME_ACT_STP_ID],
SMC_NAME_ENGINE_NUM

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

Statistic types and
datatypes

SMC_NAME_PAGE_LOGICAL_READ
Description Reports the number of data page reads, whether satisfied from cache or from a

database device.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
SMC_NAME_DB_ID, SMC_NAME_OBJ_ID,
SMC_NAME_ENGINE_NUM, [SMC_NAME_ACT_STP_DB_ID +
SMC_NAME_ACT_STP_ID]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 105

Statistic types and
datatypes

SMC_NAME_PAGE_NUM
Description Reports the number of the data page for a given lock or lock request.

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

None

Result data items for
which this key is
optional

Statistic types and
datatypes

SMC_NAME_PAGE_PHYSICAL_READ
Description Reports the number of data page reads that could not be satisfied from the data

cache.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

SMC_NAME_BLOCKING_SPID

SMC_NAME_DEMAND_LOCK

SMC_NAME_LOCKS_BEING_BLOCKED_CNT

SMC_NAME_TIME_WAITED_ON_LOCK

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

Data item definitions

106 Monitor Client Library

Optional keys SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
SMC_NAME_DB_ID, SMC_NAME_OBJ_ID,
SMC_NAME_ENGINE_NUM, [SMC_NAME_ACT_STP_DB_ID +
SMC_NAME_ACT_STP_ID]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

Statistic types and
datatypes

SMC_NAME_PAGE_WRITE
Description Reports the number of data pages written to a database device.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
SMC_NAME_DB_ID, SMC_NAME_OBJ_ID,
SMC_NAME_ENGINE_NUM, [SMC_NAME_ACT_STP_DB_ID +
SMC_NAME_ACT_STP_ID]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

Statistic types and
datatypes

SMC_NAME_PROC_STATE
Description Reports the state of a process. The possible states are:

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 107

• None

• Alarm Sleep

• Background

• Bad Status

• Infected

• Lock Sleep

• Received Sleep

• Remote IO

• Runnable

• Running

• Send Sleep

• Sleeping

• Stopped

• Sync Sleep

• Terminating

• Yielding

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

SMC_NAME_PROC_STATE_CNT

Result data items for
which this key is
optional

None

Statistic types and
datatypes

Enum SMC_PROC_STATE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

ENUMS

Data item definitions

108 Monitor Client Library

SMC_NAME_PROC_STATE_CNT
Description Reports the number of processes in a particular state.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_PROC_STATE

Optional keys None

Statistic types and
datatypes

SMC_NAME_SPID
Description Reports the process identification number. Views that contain

SMC_NAME_SPID report only on processes that are active as of the end of
the sample period. SMC_NAME_SPID is mutually exclusive with
SMC_NAME_APPLICATION_NAME in a view.

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

SMC_NAME_BLOCKING_SPID

SMC_NAME_CONNECT_TIME

SMC_NAME_CPU_PCT

SMC_NAME_CPU_TIME

SMC_NAME_CUR_APP_NAME

SMC_NAME_CUR_ENGINE

SMC_NAME_CUR_EXECUTION_CLASS

SMC_NAME_CUR_PROC_STATE

SMC_NAME_CUR_STMT_ACT_STP_DB_NAME

SMC_NAME_CUR_STMT_ACT_STP_NAME

SMC_NAME_CUR_STMT_ACT_STP_OWNER_NAME

SMC_NAME_CUR_STMT_ACT_STP_TEXT

SMC_NAME_CUR_STMT_BATCH_TEXT

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 109

Result data items for
which this key is
optional

Statistic types and
datatypes

SMC_NAME_CUR_STMT_CPU_TIME

SMC_NAME_CUR_STMT_ELAPSED_TIME

SMC_NAME_CUR_STMT_LINE_NUM

SMC_NAME_CUR_STMT_LOCKS_GRANTED_IMMED

SMC_NAME_CUR_STMT_LOCKS_GRANTED_WAITED

SMC_NAME_CUR_STMT_LOCKS_NOT_GRANTED

SMC_NAME_CUR_STMT_PAGE_IO_CNT

SMC_NAME_CUR_STMT_PAGE_CACHE_READ_CNT

SMC_NAME_CUR_STMT_PAGE_PHYSICAL_READ_CNT

SMC_NAME_CUR_STMT_PAGE_WRITE_CNT

SMC_NAME_CUR_STMT_QUERY_PLAN_TEXT

SMC_NAME_CUR_STMT_START_TIME

SMC_NAME_CUR_STMT_TEXT_BYTE_OFFSET

SMC_NAME_DEMAND_LOCK

SMC_NAME_HOST_NAME

SMC_NAME_KPID

SMC_NAME_LOCKS_BEING_BLOCKED_CNT

SMC_NAME_LOGIN_NAME

SMC_NAME_TIME_WAITED_ON_LOCK

SMC_NAME_LOCK_CNT

SMC_NAME_LOCKS_GRANTED_IMMED

SMC_NAME_LOCKS_GRANTED_WAITED

SMC_NAME_LOCKS_NOT_GRANTED

SMC_NAME_PAGE_INDEX_LOGICAL_READ

SMC_NAME_PAGE_INDEX_PHYSICAL_READ

SMC_NAME_PAGE_LOGICAL_READ

SMC_NAME_PAGE_PHYSICAL_READ

SMC_NAME_PAGE_WRITE

SMC_NAME_STP_CPU_TIME

SMC_NAME_STP_NUM_TIMES_EXECUTED

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

Data item definitions

110 Monitor Client Library

SMC_NAME_SQL_SERVER_NAME
Description Reports the name of the Adaptive Server that is being monitored as specified

in the -s parameter to the start-up command of the Monitor Server to which the
application is connected.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_SQL_SERVER_VERSION
Description Reports the version of the Adaptive Server that is being monitored. For more

information, refer to the global @@version variable in the Transact-SQL
User’s Guide.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_STP_CPU_TIME
Description Reports the CPU time, in seconds, spent executing a stored procedure.

Version compatibility 11.0 and later

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 111

Data item type Result

Server level No

Required keys SMC_NAME_ACT_STP_DB_ID, SMC_NAME_ACT_STP_ID

Optional keys SMC_NAME_SPID, SMC_NAME_STP_STMT_NUM,
SMC_NAME_STP_LINE_NUM

Statistic types and
datatypes

SMC_NAME_STP_ELAPSED_TIME
Description Reports the time, in seconds, spent executing a stored procedure.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_ACT_STP_DB_ID, SMC_NAME_ACT_STP_ID

Optional keys SMC_NAME_STP_STMT_NUM, SMC_NAME_STP_LINE_NUM

Statistic types and
datatypes

SMC_NAME_STP_EXECUTION_CLASS
Description Reports the configured execution class, if any, for a given stored procedure.

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_ACT_STP_DB_ID, SMC_NAME_ACT_STP_ID

Optional keys SMC_NAME_STP_STMT_NUM, SMC_NAME_STP_LINE_NUM

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE DOUBLE DOUBLE

Data item definitions

112 Monitor Client Library

Statistic types and
datatypes

SMC_NAME_STP_HIT_PCT
Description Reports the percentage of times that a stored procedure execution found the

procedure’s query plan in procedure cache and available for use.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_STP_LINE_NUM
Description Reports the stored procedure line number.

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

None

Result data items for
which this key is
optional

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

SMC_NAME_STP_CPU_TIME

SMC_NAME_STP_ELAPSED_TIME

SMC_NAME_STP_NUM_TIMES_EXECUTED

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 113

SMC_NAME_STP_LINE_TEXT
Description Reports the entire text of the stored procedure.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_ACT_STP_DB_ID, SMC_NAME_ACT_STP_ID

Optional keys None

Statistic types and
datatypes

SMC_NAME_STP_LOGICAL_READ
Description Reports the number of requests to execute a stored procedure, whether satisfied

from procedure cache or with a read from sysprocedures.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_STP_NUM_TIMES_EXECUTED
Description Reports the number of times a stored procedure, or a line in a stored procedure,

was executed.

Version compatibility 11.0 and later

Data item type Result

Server level No

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

114 Monitor Client Library

Required keys SMC_NAME_ACT_STP_DB_ID, SMC_NAME_ACT_STP_ID

Optional keys SMC_NAME_SPID, SMC_NAME_STP_STMT_NUM,
SMC_NAME_STP_LINE_NUM

Statistic types and
datatypes

SMC_NAME_STP_PHYSICAL_READ
Description Reports the number of requests to execute a stored procedure for which a read

from sysprocedures was necessary.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_STP_STMT_NUM
Description Reports the number within a stored procedure. A single stored procedure line

may contain one or more statements.

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

None

Result data items for
which this key is
optional

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

SMC_NAME_STP_CPU_TIME

SMC_NAME_STP_ELAPSED_TIME

SMC_NAME_STP_NUM_TIMES_EXECUTED

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 115

Statistic types and
datatypes

SMC_NAME_THREAD_EXCEEDED_MAX
Description Reports the number of times a query plan was runtime-adjusted because of

attempting to exceed the configured limit of threads in the server-wide worker
thread pool in Adaptive Server.

Version compatibility 11.5 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_THREAD_EXCEEDED_MAX_PCT
Description Reports the percentage of time a query plan was adjusted at runtime because it

tried to exceed the configured limit of threads in the server-wide worker thread
pool in Adaptive Server.

Version compatibility 11.5 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DOUBLE DOUBLE

Data item definitions

116 Monitor Client Library

SMC_NAME_THREAD_MAX_USED
Description Reports the maximum number of threads from the server-wide worker thread

pool that were concurrently in use on the server.

Version compatibility 11.5 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_TIME_WAITED_ON_LOCK
Description Reports the amount of time (in seconds) waited for a lock request to be granted.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID, SMC_NAME_DB_ID, SMC_NAME_OBJ_ID,
SMC_NAME_LOCK_STATUS

Optional keys SMC_NAME_LOCK_TYPE, SMC_NAME_PAGE_NUM

Statistic types and
datatypes

SMC_NAME_TIMESTAMP
Description Reports the date and time on Adaptive Server in its time zone. For more

information, refer to the getdate() function in the Transact-SQL User’s Guide.

Version compatibility 11.0 and later

Data item type Result

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 117

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_TIMESTAMP_DATIM
Description Reports the date and time on Adaptive Server in its time zone, returned in a

CS_DATETIME struct. For more information, refer to the getdate() function in
the Transact-SQL User’s Guide.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_XACT
Description Reports the number of committed Transact-SQL statement blocks

(transactions).

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

CHARP

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

DATIM

Data item definitions

118 Monitor Client Library

Statistic types and
datatypes

SMC_NAME_XACT_DELETE
Description Reports the number of rows deleted from database tables.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_XACT_DELETE_DEFERRED
Description Reports the number of rows deleted from a database table that were done in

deferred mode.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 119

SMC_NAME_XACT_DELETE_DIRECT
Description Reports the number of rows deleted from a database table that were done in

direct mode.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_XACT_INSERT
Description Reports the number of insertions into a database table.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_XACT_INSERT_CLUSTERED
Description Reports the number of insertions to database tables that have a clustered index.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

120 Monitor Client Library

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_XACT_INSERT_HEAP
Description Reports the number of insertions to database tables that do not have a clustered

index.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_XACT_SELECT
Description Reports the number of SELECT or OPEN CURSOR statements.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 121

SMC_NAME_XACT_UPDATE
Description Reports the updates to database tables.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_XACT_UPDATE_DEFERRED
Description Reports the updates to a database table that are performed in deferred mode

rather than in direct mode.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_XACT_UPDATE_DIRECT
Description Reports the sum of expensive, in-place, and not-in-place updates (everything

except updates deferred). Also called updates in place.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

122 Monitor Client Library

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_XACT_UPDATE_EXPENSIVE
Description Reports the updates to a database table that are done in expensive mode. In

expensive mode, a row is deleted from its original location, and inserted at a
new location.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

SMC_NAME_XACT_UPDATE_IN_PLACE
Description Reports the updates that do not require a delete and insert.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

VALUE_
 SAMPLE

VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

Programmer’s Guide 123

SMC_NAME_XACT_UPDATE_NOT_IN_PLACE
Description Reports the updates that require a delete and insert.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and
datatypes VALUE_

 SAMPLE
VALUE_
 SESSION

RATE_
 SAMPLE

RATE_
 SESSION

AVG_
 SAMPLE

AVG_
 SESSION

LONG LONG DOUBLE DOUBLE

Data item definitions

124 Monitor Client Library

Programmer’s Guide 125

C H A P T E R 3 Monitor Client Library Functions

This chapter contains information about Monitor Client Library functions.

Library functions
You use Monitor Client Library functions to write applications that collect
Adaptive Server performance data. This chapter describes, in alphabetical
order, each Monitor Client Library function. Table 3-1 lists the functions
and a brief description of each.

Table 3-1: Monitor Client Library functions

Topic Page
Library functions 125

Threads 126

Error handling 127

Function Description

smc_close Closes a connection

smc_connect_alloc Creates a connection structure

smc_connect_drop Deallocates a connection structure

smc_connect_ex Establishes a connection

smc_connect_props Sets, retrieves, or clears properties on a connection

smc_create_alarm_ex Adds an alarm to a data item

smc_create_filter Adds a filter to a data item

smc_create_playback_session Initializes a playback session on a Historical Server connection

smc_create_recording_session Initializes a recording session on a Historical Server connection

smc_create_view Defines a view

smc_drop_alarm Removes an alarm from a data item in a view

smc_drop_filter Removes a filter from a data item in a view

smc_drop_view Drop a views

smc_get_command_info Retrieves detailed information about an alarm or error

smc_get_dataitem_type Retrieves the type of a data item

Threads

126 Monitor Client Library

Most functions work with Monitor Server and Historical Server. In this
chapter, unless otherwise noted, the term connection means a connection to
Monitor Server or Historical Server. See Appendix C, “Backward
Compatibility” for information about obsolete functions.

Threads
Two threads cannot use Monitor Client Library functions at the same time. Use
a global lock (semaphore) on Monitor Client Library calls to avoid any thread
overwrites or unpredictable actions.

Monitor Client Library functions are not protected from reentrant invocation.
Use the following special programming considerations when using these
functions in a multithreaded environment. Be sure that:

• A call to create a client connection (smc_connect) is serialized with all
other Monitor Client Library function calls across all threads.

• A call to disconnect a client connection (smc_disconnect) is serialized with
all other Monitor Client Library function calls across all threads.

• Any single client connection lives in one, and only one, thread. All
Monitor Client Library function calls to access this client connection occur
in this thread.

• A call to refresh a client connection is serialized with all other Monitor
Client Library function calls on this connection in this thread.

smc_get_dataitem_value Retrieves the data for a particular data item and row

smc_get_row_count Retrieves the number of rows of data in a view

smc_get_version_string Retrieves the Monitor Client Library version number

smc_initiate_playback Concludes the definition of views for a playback session

smc_initiate_recording Concludes the definition of views for a recording session

smc_refresh_ex Retrieves data for all views in a given connection

smc_terminate_playback Ends a playback session on a Historical Server connection

smc_terminate_recording Cancels a recording session on a Historical Server connection

Function Description

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 127

Error handling
A Monitor Client Library application installs an error handler when it creates
a connection. This error handler is called whenever an error occurs for that
connection.

Most Monitor Client Library functions return one of the following values:

Table 3-2: Return values

Other return values are listed with the functions that return them.

Note The error callback function is not triggered under certain error conditions
regarding data item specification in smc_create_view and smc_create_alarm.
To capture these error conditions, check the return code for these functions.

Error handler
Description An error handler is a user-defined function.

Syntax SMC_VOID ErrorCallback (
 SMC_CONNECT_ID clientId,
 SMC_COMMAND_ID commandId,
 SMC_VOIDP userDataHandle)

Parameters clientId
identifies a monitor connection.

commandId
identifies an instance of a command.

userDataHandle
user-supplied pointer.

Return value Description

SMC_RET_SUCCESS The function completed successfully.

SMC_RET_FAILURE The function failed. More detailed information is available from the error
handler.

SMC_RET_INVALID_CONNECT The function did not execute because it was requested against an erroneous
connection. The error handler is not invoked because error handlers are
available only for valid connections.

Callback function

128 Monitor Client Library

Usage • An error handler can be changed at any time using either
smc_change_error_handler or smc_connect_props functions. See Callback
function on page 128 for more information.

Note C++ member functions cannot be used as callback functions.

Callback function
Description Callback functions are user-defined functions that notify an application when

an event has occurred. These functions are registered with Monitor Client
Library API calls for:

• Alarms

• Error information

When either of the above events occur, a callback function is executed.

Syntax SMC_VOID CallbackFunction
 (SMC_CONNECT_ID clientId,
 SMC_COMMAND_ID commandId,
 SMC_VOIDP userDataHandle)

Parameters clientId
identifies the connection.

commandId
identifies the instance of a command.

userDataHandle
user data pointer for a given connection. An application can set this pointer
by using smc_connect_props.

Usage Accessing callback data

When an event triggers a callback function, you can request information about
the event. Data is accessed by calling smc_get_command_info from within the
callback function. This function takes a connection ID, a command ID, and an
enumerator constant that identifies which piece of data the user is interested in.
The data available depends on the type of callback. Table 3-3 describes the data
available for alarm callbacks. Table 3-4 describes the data available for error
callbacks.

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 129

Table 3-3: Data available for alarm callbacks

Table 3-4: Data available for error callbacks

smc_close
Description Closes a connection that was created with smc_connect_ex. This function

terminates the connection but does not deallocate it. Use smc_connect_drop to
deallocate a connection structure.

Syntax SMC_RETURN_CODE smc_close
 (SMC_CONNECT_ID clientId,
 SMC_CLOSE_TYPE closeType)

Information type Description

SMC_INFO_ALARM_ACTION_DATA String supplied for alarmActionData upon creation of the alarm.

SMC_INFO_ALARM_ALARMID Identifies the alarm.

SMC_INFO_ALARM_CURRENT_VALUE Current value that met or exceeded the alarm threshold.

SMC_INFO_ALARM_DATAITEM Data item on which the alarm was set. Points to a
SMC_DATAITEM_STRUCT.

SMC_INFO_ALARM_ROW Row containing the data item value that triggered the alarm.

SMC_INFO_ALARM_THRESHOLD_VALUE Threshold value defined for this alarm.

SMC_INFO_ALARM_TIMESTAMP Time (in the Adaptive Server time zone) marking the end of the
sample interval in whose data the alarm condition was met.

SMC_INFO_ALARM_VIEWID Identifies a view created on the connection.

Information type Description

SMC_INFO_ERR_MAPSEVERITY Monitor Client Library severity level.

SMC_INFO_ERR_MSG Text of the error message. (See Appendix D, “Troubleshooting
Information and Error Messages”.)

SMC_INFO_ERR_NUM Number of the error.

SMC_INFO_ERR_SEVERITY Severity of the error message.

SMC_INFO_ERR_SOURCE Source of the error message. One of the following:

• SMC_SRC_UNKNOWN – not known

• SMC_SRC_HS – Historical Server

• SMC_SRC_SMC – Monitor Client Library

• SMC_SRC_CT – Client Library

• SMC_SRC_SS – Adaptive Server

• SMC_SRC_SMS – Monitor Server

SMC_INFO_ERR_STATE State of the error. Useful for technical support in diagnosing internal errors.

smc_close

130 Monitor Client Library

Parameters clientId
identifies the connection.

closeType
type of close: SMC_CLOSE_REQUEST

Return value

Examples This example assumes that you have created a connection and have a clientId.

if (smc_close(clientId,SMC_CLOSE_REQUEST)
 != SMC_RET_SUCCESS)
 {
 printf("smc_close failed\n");
 /* do some cleanup */
 }

Usage • All views (as well as alarms and filters associated with the data items in
the view) on the specified connection are also dropped.

• smc_close disconnects only a connection. Call smc_connect_drop to
deallocate a connection structure.

• If smc_close returns a failure, the user is advised to call smc_connect_drop.

Valid server modes

Errors

See also smc_connect_drop, smc_connect_ex

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes

Error Indicates

SMC_RET_INTERNAL_ERROR Internal error

SMC_RET_INVALID_API_FUNCTION Invalid use of obsolete and replacement
functions in the same connection

SMC_RET_INVALID_API_FUNC_
 SEQUENCE

Invalid calling sequence of Monitor
Client Library functions

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 131

smc_connect_alloc
Description Creates a connection structure with error callback, but does not establish a

connection.

Syntax SMC_RETURN_CODE smc_connect_alloc
 (SMC_GEN_CALLBACK ErrCallback,
 SMC_CONNECT_IDP clientIdHandle)

Parameters ErrCallback
Pointer to error callback function.

clientIdHandle
Pointer to a variable, which should be declared as type
SMC_CONNECT_ID. If the call to smc_connect succeeds, this variable
contains the ID for the Monitor connection.

Return value

Examples The following example assumes you have defined an error callback function,
myErrorHandler.

SMC_CONNECT_ID clientId;
 if (smc_connect_alloc(myErrorHandler,&clientId)
 != SMC_RET_SUCCESS)
 {
 printf("smc_connect_alloc failed\n");
 exit(1);
 }

Usage • The error handler parameter cannot be null.

• Use smc_connect_props to set properties on a connection.

• Use smc_connect_ex to establish the connection identified by
clientIdHandle.

• Use smc_connect_drop to deallocate a connection structure created with
smc_connect_alloc.

Valid server modes

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes

smc_connect_drop

132 Monitor Client Library

Errors

See also smc_connect_drop, smc_connect_ex, smc_connect_props

smc_connect_drop
Description Deallocates a connection structure that was created with smc_connect_alloc.

Syntax SMC_RETURN_CODE smc_connect_drop
 (SMC_CONNECT_ID clientId)

Parameters clientId
identifies the connection.

Return value

Examples This example assumes that:

• You have created a connection using smc_connect_alloc and have a
clientId.

• You have successfully executed smc_close on the connection.

if (smc_connect_drop(clientId) != SMC_RET_SUCCESS) {
 printf("smc_connect_drop failed\n");
 /* do some cleanup */
 }

Usage • smc_close must be called before smc_connect_drop, if a connection was
successfully made.

Valid server modes

Error Indicates

SMC_RET_INSUFFICIENT_MEMORY Insufficient memory

SMC_RET_INTERNAL_ERROR Internal error

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 133

Errors

See also smc_close, smc_connect_alloc

smc_connect_ex
Description Establishes a connection for the connection structure created with

smc_connect_alloc. Properties on the connection, such as Server Name and
Server Mode, must have been set with smc_connect_props.

Syntax SMC_RETURN_CODE smc_connect_ex
 (SMC_CONNECT_ID clientId)

Parameters clientId
identifies the connection.

Return value

Examples This example assumes you have created a connection using smc_connect_alloc
and have a clientId.

if (smc_connect_ex(clientId) != SMC_RET_SUCCESS)
{

printf("smc_connect_ex failed\n");
exit(1);

}

Usage • smc_connect_alloc and smc_connect_props must be called before
smc_connect_ex.

• Each Monitor Client Library connection uses two network connections. If
you are running a Monitor Client Library application on a PC and reach
the limit on network connections, reconfigure your networking software to
raise the limit.

Error Indicates

SMC_RET_CONNECT_NOT_CLOSED Connection has not been closed

SMC_RET_INVALID_API_FUNCTION Invalid use of obsolete and replacement functions on the same
connection

SMC_RET_INVALID_API_FUNC_SEQUENCE Invalid calling sequence of Monitor Client Library functions

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

smc_connect_props

134 Monitor Client Library

Valid server modes

Errors

See also smc_close, smc_connect_alloc

smc_connect_props
Description Sets, retrieves, or clears properties on a connection.

Syntax SMC_RETURN_CODE smc_connect_props
 (SMC_CONNECT_ID clientId,
SMC_PROP_ACTION propertyAction,
SMC_PROP_TYPE property,
SMC_VALUE_UNIONP propertyValue,
SMC_SIZET bufferLength,
SMC_SIZETP outputLengthHandle)

Parameters clientId
identifies the connection.

propertyAction
Property action type. Valid types are:

• SMC_PROP_ACT_CLEAR – reset the value of the specified property
to its default.

• SMC_PROP_ACT_GET – retrieve the value of the specified property.

• SMC_PROP_ACT_SET – set the value of the specified property.

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes

Error Indicates

SMC_RET_INSUFFICIENT_MEMORY Insufficient memory

SMC_RET_INTERNAL_ERROR Internal error

SMC_RET_INVALID_API_FUNCTION Invalid use of obsolete and replacement functions on the
same connection

SMC_RET_INVALID_API_FUNC_SEQUENCE Invalid calling sequence of Monitor Client Library functions

SMC_RET_INVALID_PROPERTY Property has not been set

SMC_RET_UNABLE_TO_CONNECT_TO_SMS Cannot connect to Monitor Server

SMC_RET_UNABLE_TO_CONNECT_TO_SS Cannot connect to Adaptive Server

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 135

property
the symbolic name of the property whose value is being set, retrieved, or
cleared. See Table 3-5 on page 137 for a list of this argument’s legal values.

propertyValue
if propertyAction is:

• SMC_PROP_ACT_CLEAR – propertyValue is ignored.

• SMC_PROP_ACT_GET – pointer to the union in which
smc_connect_props will place the requested information.

• SMC_PROP_ACT_SET – pointer to the union that contains the value
to which property is to be set.

bufferLength
the length of data in bytes of
 *(propertyValue->stringValue). Used only if propertyValue is a pointer to a
string. If propertyAction is:

• SMC_PROP_ACT_CLEAR – bufferLength is ignored, and must be
passed SMC_UNUSED.

• SMC_PROP_ACT_GET – bufferLength is ignored, and must be passed
SMC_UNUSED.

• SMC_PROP_ACT_SET – bufferLength must contain the number of
bytes of *(propertyValue-> stringValue) or SMC_NULLTERM to
indicate the string’s length by a terminating null byte.

outputLengthHandle
a pointer to an integer variable. Used only if propertyValue is a pointer to a
string. If propertyAction is:

• SMC_PROP_ACT_CLEAR – outputLengthHandle is ignored, and
must be passed null.

• SMC_PROP_ACT_GET – the length in bytes of the requested
information. Contains the number of bytes that were actually written to
 propertyValue->stringValue (not including the null-terminating byte).
Pass null if this information is not desired.

• SMC_PROP_ACT_SET – outputLengthHandle is ignored, and must be
passed null.

Return value
Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

smc_connect_props

136 Monitor Client Library

Examples This example assumes that you have previously allocated a connection using
smc_connect_alloc and have a clientId.

SMC_VALUE_UNION value.sizetValue = 512;
if (smc_connect_props(clientId,

SMC_PROP_ACT_SET,
SMC_PROP_PACKETSIZE,
&value,
0,
NULL) != SMC_RET_SUCCESS)

{
printf("smc_connect_props failed\n");
/* do some cleanup */

}

Usage • A property resets to its default value when cleared.

• smc_connect_props must be called after smc_connect_alloc.

• The following properties must be set on a connection before calling
smc_connect_ex:

• SMC_PROP_PASSWORD

• SMC_PROP_SERVERNAME

• SMC_PROP_USERNAME

• The serverMode determines which other Monitor Client Library functions
are applicable for the connection. For example,
smc_create_recording_session is not applicable for a live connection.

• The serverMode (specified upon creation of a connection) determines the
behavior of the common functions. For example, smc_create_view can be
used to create a live view or a historical view.

• For live connections and historical connections for defining recording
sessions, the property SMC_PROP_USERNAME must be set to either
“sa”, the name of an Adaptive Server account having sa_role, or the name
of an Adaptive Server account with execute permission on the stored
procedure master.dbo.mon_rpc_connect.

• To retrieve only the length of a string, pass null for propertyValue and a
valid pointer for outputLengthHandle.

SMC_RET_INVALID_CONNECT Connection does not exist.

Return value Indicates

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 137

• For the definition of a SMC_VALUE_UNION structure, see “Union:
SMC_VALUE_UNION” on page 236.

• For data of type SMC_CHARP, stringValue points to the value. The
Monitor Client Library allocates the memory for this string and the calling
application must deallocate it using free().

• The following properties are valid only before a connection is made:

• SMC_PROP_APPNAME

• SMC_PROP_IFILE

• SMC_PROP_PASSWORD

• SMC_PROP_SERVERMODE

• SMC_PROP_SERVERNAME

• SMC_PROP_USERNAME.

If these properties are changed on a connection after it has been
established, they take effect during the next call to smc_connect_ex.

• Table 3-5 summarizes the Monitor Client Library properties, whether they
can be set, retrieved, or cleared, and the datatype of each property value:

Table 3-5: Monitor Client Library connection properties

Property
Set,Get,
or Clear *propertyValue is Default

SMC_PROP_APPNAME All SMC_CHARP An empty string

SMC_PROP_ERROR_CALLBACK Set/Get A function pointer (use
voidpValue member of
SMC_VALUE_UNION)

SMC_PROP_IFILE All SMC_CHARP Empty string, signifying the
interfaces file in directory
where the SYBASE environment
variable points (on Windows,
sql.ini in the ini subdirectory)

SMC_PROP_LOGIN_TIMEOUT All SMC_SIZET 0 (Use the server default)

SMC_PROP_PACKETSIZE All SMC_SIZET 0 (Use the server default)

SMC_PROP_PASSWORD Set/Clear SMC_CHARP An empty string

SMC_PROP_SERVERMODE All SMC_INT SMC_SERVER_M_LIVE

SMC_PROP_SERVERNAME All SMC_CHARP An empty string

SMC_PROP_TIMEOUT All SMC_SIZET 0 (Use the server default)

SMC_PROP_USERDATA All SMC_VOIDP NULL

SMC_PROP_USERNAME All SMC_CHARP An empty string

smc_connect_props

138 Monitor Client Library

Properties

Valid server modes

Errors

See also smc_connect_alloc, smc_connect_ex

Property Description

SMC_PROP_APPNAME The name of the application using Monitor Client Library. This property can
be modified at any time, but takes effect only when smc_connect_ex is
called.

SMC_PROP_ERROR_
CALLBACK

The error callback function. This property can be modified at any time during
the connection.

SMC_PROP_IFILE The interfaces file. This property can be modified at any time, but takes
effect only when smc_connect_ex is called.

SMC_PROP_LOGIN_TIMEOUT The timeout value (in seconds) used during login time. This property can be
modified at any time, but takes effect when only smc_connect_ex is called.

SMC_PROP_PACKETSIZE The packet size to use for communicating to the servers. This property can
be modified at any time during the connection.

SMC_PROP_PASSWORD The password. This property can be modified at any time, but takes effect
only when smc_connect_ex is called.

SMC_PROP_SERVERMODE The server mode. This property can be set only before a connection is
established. It can be modified at any time, but takes effect when only
smc_connect_ex is called. The value is an enum: SMC_SERVER_MODE.
See “Enum: SMC_SERVER_MODE” on page 236.

SMC_PROP_SERVERNAME The server name. This property can be modified at any time, but takes effect
only when smc_connect_ex is called.

SMC_PROP_TIMEOUT The timeout value to use for requests sent to the servers. This property can
be modified at any time during the connection.

SMC_PROP_USERDATA A user-supplied pointer. This pointer is passed back to callback functions. It
can be changed at any time on an available connection.

SMC_PROP_USERNAME The username to use for this connection. This property can be modified at
any time, but takes effect only when smc_connect_ex is called.

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes

Error Indicates

SMC_RET_INVALID_API_FUNCTION Invalid use of obsolete and replacement
functions in program.

SMC_RET_INVALID_PARAMETER Invalid parameter value.

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 139

smc_create_alarm_ex
Description Creates an alarm on one data item within a view on a connection.

Syntax SMC_RETURN_CODE smc_create_alarm_ex
(SMC_CONNECT_ID clientId,
SMC_VIEW_ID viewId,
SMC_DATAITEM_STRUCTP dataItemHandle,
SMC_VALUE_UNIONP alarmValueDataHandle,
SMC_DATAITEM_TYPE alarmDatatype,
SMC_ALARM_ACTION_TYPE alarmActionType,
SMC_CHARP alarmActionData,
SMC_VOIDP userDataHandle,
SMC_GEN_CALLBACK alarmCallback,
SMC_ALARM_IDP alarmIdHandle)

Parameters clientId
identifies the connection.

viewId
identifies a view created on the connection.

dataItemHandle
pointer to data item and statistic type.

alarmValueDataHandle
pointer to threshold at or above which the alarm is triggered.

alarmDatatype
the datatype of the alarm value must be one of the following and must match
the expected datatype for the given data item:

• SMC_DI_TYPE_DOUBLE

• SMC_DI_TYPE_INT

• SMC_DI_TYPE_LONG

alarmActionType
• SMC_ALARM_A_NOTIFY

 (SMC_SERVER_ M_LIVE mode only) – invokes the alarm callback.

• SMC_ALARM_A_EXEC_PROC (SMC_SERVER_
M_HISTORICAL mode only) – invokes the specified external
program.

• SMC_ALARM_A_LOG_TO_FILE (SMC_SERVER_
M_HISTORICAL mode only) – writes a message to the log file.

smc_create_alarm_ex

140 Monitor Client Library

alarmActionData
pointer to null-terminated string whose contents depend on
alarmActionType. If alarmActionType equals:

• SMC_ALARM_A_NOTIFY – alarmActionData is ignored.

• SMC_ALARM_A_EXEC_PROC – null-terminated string that
contains the filename and optional parameter list of the program to
invoke.

• SMC_ALARM_A_LOG_TO_FILE – null-terminated string that
contains the log file name.

These file names are on the system where Historical Server is running
(which need not be where the application is running). The Historical Server
must have access to the files.

userDataHandle
user-supplied pointer.

alarmCallback
identifies the notification function employed by alarmActionType,
SMC_ALARM_A_NOTIFY.

alarmIdHandle
pointer to a variable, which should be declared as type SMC_ALARM_ID.
If the call to smc_create_alarm succeeds, this variable contains the ID for the
alarm.

Return value

Examples This example assumes that:

• You have created a connection using smc_connect_ex and have a clientId.

• You have created a view on the connection and have a viewId.

• The view contains the dataItem
SMC_NAME_PAGE_LOGICAL_READ,
SMC_STAT_VALUE_SAMPLE.

• You have defined an alarm handler function, myAlarmHandler.

SMC_DATAITEM_STRUCT dataItem =
{ SMC_NAME_PAGE_LOGICAL_READ,

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 141

SMC_STAT_VALUE_SAMPLE };
SMC_DATAITEM_STRUCTP dataItemHandle = &dataItem;
SMC_VALUE_UNION alarmValue;
SMC_VALUE_UNIONP alarmValueHandle = &alarmValue;
SMC_ALARM_ID alarmId;
SMC_ALARM_IDP alarmIdHandle = &alarmId;
alarmValue.longValue = 10L;

if (smc_create_alarm_ex(clientId,
viewId,
dataItemHandle,
alarmValueHandle,
SMC_DI_TYPE_LONG,
SMC_ALARM_A_NOTIFY,
NULL, /* ignored */
NULL,/* no user data */
myAlarmHandler,
alarmIdHandle) != SMC_RET_SUCCESS)

{
printf("smc_create_alarm_ex failed\n");
/* do some cleanup */

}

Usage • Alarms can be created on result data items, but not on key data items.

• alarmIds are unique only within a given view.

• Alarms are triggered for each row of a view where the data item value
meets or exceeds the threshold.

• Alarms are applied after filters, in the context of a refresh call.

• Alarms are triggered at each refresh based upon a data item’s value (state)
rather than the change of a data item’s value (transition).

• Multiple alarms can be created on the same data item.

• When used in a Historical Server connection during the definition of a
recording session, smc_create_alarm_ex defines an alarm that will be
created during the execution of a recording session.

• Alarms cannot be defined in a Historical Server connection during a
playback session.

smc_create_alarm_ex

142 Monitor Client Library

• When creating a log-to-file alarm, if you specify a UNIX directory for the
location of the log file, be sure that the directory is valid and mounted on
the machine where Historical Server is running. Also be sure that you have
write permissions to the directory. If the directory you specify is invalid,
unmounted, or not writable, Historical Server does not create a log file, nor
does it issue a message advising you that the location is invalid.

The syntax of the alarm callback is:

SMC_VOID AlarmCallback
(SMC_CONNECT_ID clientId,
SMC_COMMAND_ID commandId,
SMC_VOIDP userDataHandle)

Valid server modes

Errors

Callback parameters

The alarm callback function uses smc_get_command_info to obtain
information about the circumstances that triggered the alarm.

See also smc_connect_ex, smc_drop_alarm, smc_get_command_info

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes (for recording)

Error Indicates

SMC_RET_INSUFFICIENT_MEMORY Insufficient memory

SMC_RET_INVALID_ALARM_VALUE Invalid alarm value

SMC_RET_INVALID_API_FUNCTION Invalid use of obsolete and replacement functions within
the same program

SMC_RET_INVALID_DATAITEM_FOR_ALARM Data item statistic type or alarm value mismatched

SMC_RET_INVALID_DATATYPE Invalid datatype

SMC_RET_INVALID_DINAME Data item does not exist

SMC_RET_INVALID_DISTAT Data item statistic type does not exist

SMC_RET_INVALID_PARAMETER Invalid parameter value

SMC_RET_INVALID_VIEWID View does not exist

SMC_RET_INTERNAL_ERROR Internal error

Parameter Description

clientId Identifies the connection.

commandId Identifies the instance of a command.

userDataHandle Pointer that was set by the call to smc_create_alarm for this
alarm.

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 143

smc_create_filter
Description Creates a filter on a data item in a view. Each data item in a view can have only

one filter.

This function can be used with both Monitor Server and Historical Server.
When used with Historical Server (that is, when the connection mode is
SMC_SERVER_M_HISTORICAL), it creates a filter for the recording session
that is being defined.

Syntax SMC_RETURN_CODE smc_create_filter
(SMC_CONNECT_ID clientId,
SMC_VIEW_ID viewId,
SMC_DATAITEM_STRUCTP dataItemHandle,
SMC_FILTER_TYPE filterType,
SMC_VALUE_UNIONP filterValueListHandle,
SMC_SIZET filterValueListLength,
SMC_DATAITEM_TYPE filterDatatype,
SMC_FILTER_IDP filterIdHandle)

Parameters clientId
identifies the connection.

viewId
identifies a view created on the connection.

dataItemHandle
data item and statistic type. The data item must be numeric if the filter type
is any of the following:

• SMC_FILT_T_GE

• SMC_FILT_T_LE

• SMC_FILT_T_GE_AND_LE

• SMC_FILT_TOP_N

smc_create_filter

144 Monitor Client Library

filterType
type of filter to apply. Valid filter types are:

• SMC_FILT_T_EQ – equal to.

• SMC_FILT_T_NEQ – not equal to.

• SMC_FILT_T_GE – greater than or equal to.

• SMC_FILT_T_LE – less than or equal to.

• SMC_FILT_T_GE_AND_LE – a lower bound followed by an upper
bound.

• SMC_FILT_T_TOP_N – top N.

filterValueListHandle
pointer to an array of filter values. The number of filter values depends on
the filter type:

• SMC_FILT_T_EQ – one or more.

• SMC_FILT_T_NEQ – one or more.

• SMC_FILT_T_GE – one.

• SMC_FILT_T_LE – one.

• SMC_FILT_T_GE_AND_LE – two; low bound must be first element
in list and high bound second.

• SMC_FILT_T_TOP_N – one.

filterValueListLength
number of filter values listed in filterValueListHandle.

filterDataType
datatype of the values for the filter; one of the following:

• SMC_DI_TYPE_CHARP

• SMC_DI_TYPE_DATIM

• SMC_DI_TYPE_DOUBLE

• SMC_DI_TYPE_ENUMS

• SMC_DI_TYPE_INT

• SMC_DI_TYPE_LONG

Must match the datatype for the data item. The filter values must also be of
this type, except:

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 145

• If the filter type is SMC_FILT_T_TOP_N, the filter value in the
filterValueListHandle must be type SMC_INT.

• If the datatype is SMC_DI_TYPE_ENUMS, the filter value in the
filterValueListHandle must be passed using the intValue member.

filterIdHandle
pointer to a variable, which should be declared as type SMC_FILTER_ID.
If the call to smc_create_filter succeeds, this variable contains the ID for the
filter.

Return value

Examples The following example assumes that:

• You have created a connection and have a clientId.

• You have created a view on that connection and have a viewId.

• The view contains the dataItem defined in the example.

SMC_DATAITEM_STRUCT dataItem =
{ SMC_NAME_PAGE_LOGICAL_READ,

SMC_STAT_VALUE_SAMPLE };
SMC_DATAITEM_STRUCTP dataItemHandle = &dataItem;
SMC_VALUE_UNION filterValue;
SMC_VALUE_UNIONP filterValueHandle = &filterValue;
SMC_FILTER_ID filterId;
SMC_FILTER_IDP filterIdHandle = &filterId;
filterValue.longValue = 10L;

if (smc_create_filter(clientId,
viewId,

dataItemHandle,
SMC_FILT_T_GE,
filterValueHandle,
1, /* just one filterValue */
SMC_DI_TYPE_LONG,
filterIdHandle) != SMC_RET_SUCCESS)

{
printf("smc_create_filter failed\n");
/* do some cleanup */

}

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

smc_create_playback_session

146 Monitor Client Library

Usage • The application can employ wildcard (%) characters on all filters that
apply to string datatypes.

• Filters are applied before alarms, in the context of a refresh call.

• Only one filter can be created on a data item.

• A filter defined for a recording session is not created until execution of the
recording session.

• Not allowed during playback.

• For database objects, you can define SMC_FILT_T_EQ filters on the
name of the object, that is, on a data item of SMC_NAME_OBJ_NAME
or SMC_NAME_ACT_STP_NAME. The string value must include the
fully qualified object name, for example, database.owner.object.
However, you can use wildcards for each component of the name.

Valid server modes

Errors

See also smc_drop_filter

smc_create_playback_session
Description Initializes a playback session on Historical Server.

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes (for recording only)

Error Indicates

SMC_RET_INSUFFICIENT_MEMORY Insufficient memory

SMC_RET_INVALID_COMPOSITE_FILTER Invalid composite filter

SMC_RET_MISSING_DATAITEM Missing data item

SMC_RET_INVALID_DATATYPE Invalid datatype

SMC_RET_INVALID_DINAME Invalid data item

SMC_RET_INVALID_DISTAT Invalid data item statistic type

SMC_RET_INVALID_FILTER_VALUE Invalid value for filter

SMC_RET_INVALID_FILTER_RANGE Invalid range values

SMC_RET_INVALID_VALUE_COUNT Invalid value for
filterValueListLength

SMC_RET_INVALID_VIEWID View does not exist

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 147

Syntax SMC_RETURN_CODE smc_create_playback_session
(SMC_CONNECT_ID clientId,
SMC_SESSION_IDP sessionIdArray,
SMC_SIZET numInputSessions,
SMC_CHARP startTime,
SMC_CHARP endTime,
SMC_HS_PLAYBACK_OPT playbackType,
SMC_SIZET summarizationInterval,
SMC_HS_ESTIM_OPT estimationOption,
SMC_HS_MISSDATA_OPT missingDataOption,
SMC_HS_TARGET_OPT playbackTarget,
SMC_CHARP directoryName,
SMC_HS_SESS_PROT_LEVEL protectionLevel,
SMC_HS_SESS_SCRIPT_OPT scriptOption,
SMC_HS_SESS_DELETE_OPT deleteOption,
SMC_SESSION_IDP sessionIdHandle)

Parameters clientId
identifies the connection.

sessionIdArray
array of session numbers identifying the existing recording session(s) on
Historical Server that furnishes data for this playback session. If more than
one input session is specified, then they all must have been defined to record
data from the same Adaptive Server, and they must be ordered
chronologically.

If playbackTarget is SMC_HS_TARGET_FILE, then there must not be any
gaps between the times covered by multiple input sessions. The input
sessions must contain data for all times between the startTime and endTime
parameters.

numInputSessions
the number of input sessions, that is, the length of the sessionIdArray. Must
be at least one.

startTime
null-terminated string containing the time to start playback, using the
format:

yyyy/mm/dd hh:mm[:ss] [time zone]

The default is to start at the beginning of the first input session.

endTime
null-terminated string containing the time at which to stop playback, using
the format:

 yy/mm/dd hh:mm[:ss] [time zone]

smc_create_playback_session

148 Monitor Client Library

The default is to stop at the end of the last input session.

playbackType
specifies the level of detail of the playback. Valid values are:

• SMC_HS_PBTYPE_RAW – plays back data as it was collected, using
whatever (possibly varying) intervals are contained in the input session.
This option can include snapshot data such as current SQL statement
data and status on locks or processes. Valid only with playbackTarget
SMC_HS_TARGET_CLIENT.

• SMC_HS_PBTYPE_ACTUAL – plays back data at whatever (possibly
varying) intervals are contained in the input session(s). This option
cannot include snapshot data.

• SMC_HS_PBTYPE_INTERVAL – plays back data summarized into
sample intervals of the length specified in summarizationInterval.

• SMC_HS_PBTYPE_ENTIRE – plays back data for each input
recording session summarized as a single sample. The sample interval
is the time between the requested playback startTime and endTime.

If playbackTarget is SMC_HS_TARGET_FILE, then playbackType must be
SMC_HS_PBTYPE_INTERVAL or SMC_HS_PBTYPE_ENTIRE.

summarizationInterval
if playbackType is SMC_HS_PBTYPE_INTERVAL, then this specifies the
length in seconds of the playback intervals over which the input data is to be
summarized.

For other values of playbackType, applications must specify
SMC_UNUSED for this parameter.

estimationOption
specifies whether playback may estimate the values of data items that cannot
be calculated exactly. Valid values are:

• SMC_HS_ESTIM_ALLOW

• SMC_HS_ESTIM_DISALLOW

If SMC_HS_ESTIM_DISALLOW is specified, then a subsequent call for
this playback session to smc_create_view will return an error if it includes
data items requiring estimation.

This option is ignored if playbackType is SMC_HS_PBTYPE_RAW.

missingDataOption

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 149

specifies whether the Monitor Client Library will return playback samples
for periods of time when no data is available in the input session(s). Valid
values are:

• SMC_HS_MISSDATA_SHOW – Monitor Client Library will return a
sample for periods of time lacking data.

• SMC_HS_MISSDATA_SKIP – Monitor Client Library will not return
a sample for periods of time lacking data; instead, the Library will
return data for the next available time interval for which data is
available.

If playbackTarget is SMC_HS_TARGET_FILE, this parameter is ignored.

playbackTarget
specifies whether the playback session returns data to the application or
whether playback creates a new session on Historical Server. Valid values
are:

• SMC_HS_TARGET_CLIENT – the playback session returns data to
the application, by means of calls to smc_refresh_ex.

• SMC_HS_TARGET_FILE – playback creates a new session on
Historical Server.

directoryName
if playbackTarget is SMC_HS_TARGET_FILE, this parameter specifies the
directory in which the Historical Server creates the data file(s) and error file
for the new sessions to be created.

protectionLevel
if playbackTarget is SMC_HS_TARGET_FILE, this parameter specifies the
protection level of the new session to be created. Valid values are:

• SMC_HS_SESS_PROT_PUBLIC

• SMC_HS_SESS_PROT_PRIVATE

This parameter is ignored if playbackTarget is
SMC_HS_TARGET_CLIENT.

scriptOption
if playbackTarget is SMC_HS_TARGET_FILE, this parameter specifies
whether Historical Server must create a script that creates tables for loading
results (from the new session) into Adaptive Server. The choices are:

• SMC_HS_SESS_SCRIPT_NONE – no script.

• SMC_HS_SESS_SCRIPT_SYBASE – Sybase script.

smc_create_playback_session

150 Monitor Client Library

This parameter is ignored if playbackTarget is
SMC_HS_TARGET_CLIENT.

deleteOption
if playbackTarget is SMC_HS_TARGET_FILE, this parameter specifies
whether Historical Server must delete the input session(s) after successfully
creating a new session. The choices are:

• SMC_HS_DELETE_FILES

• SMC_HS_RETAIN_FILES

This parameter is ignored if playbackTarget is
SMC_HS_TARGET_CLIENT.

sessionIdHandle
if playbackTarget is SMC_HS_TARGET_FILE, this parameter must be a
pointer to a variable of type SMC_SESSION_ID, into which the Monitor
Client Library writes the identifier for the new session.

This parameter is ignored if playbackTarget is
SMC_HS_TARGET_CLIENT.

Return value

Examples This example assumes that you have created a connection to Historical Server
and have a clientId.

SMC_SESSION_ID inputSessions[2];

if (smc_create_playback_session(clientId,
inputSessions,
2,/* number of input sessions */

"",/* default start time */
"",/* default end time */

SMC_HS_PBTYPE_INTERVAL,/* summarize at */
60,/* uniform minute intervals */
SMC_HS_ESTIM_ALLOW,/* allow estimation */
SMC_HS_MISSDATA_SHOW, /* produce a sample*/

/* every minute even if no data is */
/* available for that interval */

SMC_HS_TARGET_CLIENT, /* do playback */
"",/* directory name */
SMC_HS_SESS_PROT_PUBLIC,/* so next 5 */

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 151

SMC_HS_SESS_SCRIPT_SYBASE,/* are */
SMC_HS_DELETE_FILES,/* unused */
NULL)/* No output session ID */

!= SMC_RET_SUCCESS)
{

printf("smc_create_playback_session failed\n");
/* do some cleanup */

}

Usage • In a Historical Server connection, recording sessions and playback
sessions are mutually exclusive. An application that connects to a
Historical Server and defines a recording session, must complete the
definition of the recording session using the function
smc_initiate_recording before creating a playback session.

• If the playbackType is SMC_HS_PBTYPE_RAW, the application can
specify only one input session. Otherwise, the application can specify any
number of input sessions (but at least one), provided that all sessions were
recorded against the same Adaptive Server installation and Monitor
Server.

• If the playbackType is SMC_HS_PBTYPE_RAW, different rules apply to
the definition of playback views. See the Adaptive Server Enterprise
Monitor Historical Server User’s Guide for more information about
views.

• You cannot combine playbackTarget SMC_HS_TARGET_FILE with
playbackType SMC_HS_PBTYPE_RAW or
SMC_HS_PBTYPE_ACTUAL.

• Input sessions can include recording sessions that are still in the process of
recording, unless playbackTarget is SMC_HS_TARGET_FILE.

• If playbackTarget is SMC_HS_TARGET_FILE, then the input session
must contain performance data for the entire time from startTime to
endTime, with no gaps between input sessions.

• See the Monitor Historical Server User’s Guide for more information
about the hs_create_playback_session command.

Valid server modes
Mode Availability

SMC_SERVER_M_LIVE No

SMC_SERVER_M_HISTORICAL Yes

smc_create_recording_session

152 Monitor Client Library

Errors

See also smc_initiate_playback

smc_create_recording_session
Description Initiates the definition of a recording session on Historical Server.

This function is applicable only if the connection mode is
SMC_SERVER_M_HISTORICAL.

Syntax SMC_RETURN_CODE smc_create_recording_session
(SMC_CONNECT_ID clientId,
SMC_CHARP SMSName,
SMC_INT sampleInterval,
SMC_CHARP directoryName,
SMC_CHARP startTime,
SMC_CHARP endTime,
SMC_HS_SESS_PROT_LEVEL protectionLevel,
SMC_HS_SESS_ERR_OPT errOption,
SMC_HS_SESS_SCRIPT_OPT scriptOption,
SMC_SESSION_IDP sessionIdHandle)

Parameters clientId
identifies the connection.

SMSName
null-terminated string containing the name of the Monitor Server.

sampleInterval
the number of seconds to wait between consecutive samplings of data.

directoryName
null-terminated string containing the full path name to the directory
containing the data and error files created by Historical Server during
execution of this recording session.

The directory must be writable on the system on which Historical Server is
running. This might not be the same system that is running the client
application that invoked the function call.

Error Indicates

SMC_RET_INTERNAL_ERROR Internal error

SMC_INVALID_SVR_MODE Invalid server mode

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 153

startTime
null-terminated string containing the time to start recording, using the
format:

yyyy/mm/dd hh:mm[:ss] [time zone]

The default is to start immediately.

endTime
null-terminated string containing the time at which to stop the recording,
using the format:

yy/mm/dd hh:mm[:ss] [time zone]

The default is to stop 24 hours after startTime.

protectionLevel
protection level of the data recorded. Valid values are:

• SMC_HS_SESS_PROT_PUBLIC

• SMC_HS_SESS_PROT_PRIVATE

errOption
indicate what Historical Server must do when encountering a non-fatal error.
The choices are:

• SMC_HS_SESS_ERR_CONT – continue the session.

• SMC_HS_SESS_ERR_HALT – stop the session.

scriptOption
indicate whether Historical Server must create a script that creates tables for
loading results (from this recording session) into Adaptive Server. The
choices are:

• SMC_HS_SESS_SCRIPT_NONE – no script.

• SMC_HS_SESS_SCRIPT_SYBASE – Sybase script.

sessionIdHandle
pointer to a variable, which should be declared as type SMC_SESSION_ID.
If the call to smc_create_recording_session succeeds, this variable contains
the ID for the recording session.

Return value
Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

smc_create_recording_session

154 Monitor Client Library

Examples This example assumes that you have created a connection to Historical Server
and have a clientId.

SMC_SESSION_ID sessionId;
SMC_SESSION_IDP sessionIdHandle = &sessionId;
if (smc_create_recording_session(clientId,

"myMonitorServer",
60, /* sample interval (seconds) */
"/usr/hist_serv_home_dir",
"95/07/22 15:00", /* start time */
"95/07/23 15:30", /* end time */
SMC_HS_SESS_PROT_PUBLIC,
SMC_HS_SESS_ERR_CONT,
SMC_HS_SESS_SCRIPT_SYBASE,
sessionIdHandle) != SMC_RET_SUCCESS)

{
printf("smc_create_recording_session failed\n");

/* do some cleanup */
}

Usage • In a Historical Server connection, recording sessions and playback
sessions are mutually exclusive. An application that connects to Historical
Server and creates a playback session must end the playback session using
the function smc_terminate_playback before creating a recording session.

• See the Adaptive Server Enterprise Monitor Historical Server User’s
Guide for more information on the hs_create_recording_session
command.

Valid server modes

Errors

See also smc_initiate_recording

Mode Availability

SMC_SERVER_M_LIVE No

SMC_SERVER_M_HISTORICAL Yes

Error Indicates

SMC_RET_INTERNAL_ERROR Internal error

SMC_RET_INVALID_SVR_MODE Invalid server mode

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 155

smc_create_view
Description Creates a view that can contain one or more data items.

For information about data items, refer to Chapter 2, “Data Items and
Statistical Types.”

You can use the smc_create_view function with both Monitor Server and
Historical Server. When used with Historical Server
(SMC_SERVER_M_HISTORICAL), it creates a view for the recording or
playback session that is being defined.

Syntax SMC_RETURN_CODE smc_create_view
(SMC_CONNECT_ID clientId,
SMC_DATAITEM_STRUCTP dataItemListHandle,
SMC_SIZET dataItemListLength,
SMC_CHARP viewName,
SMC_VIEW_IDP viewIdHandle)

Parameters clientId
identifies the connection.

dataItemListHandle
pointer to array of SMC_DATAITEM_STRUCTs.

dataItemListLength
number of data items in the array pointed to by the dataItemListHandle.

viewName
null-terminated string containing a descriptive name for this view. This
name can include a – z, A – Z, 0 – 9, and underscore (_) characters, or can
be NULL.

Used only for a Historical Server connection. For a live connection, the view
name is ignored.

viewIdHandle
pointer to a variable, which should be declared as type SMC_VIEW_ID. If
the call to smc_create_view succeeds, this variable contains the ID for the
view.

Return value

Examples This example assumes that you have created a connection and have a clientId.

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

smc_create_view

156 Monitor Client Library

SMC_DATAITEM_STRUCT dataItem =
{ SMC_NAME_PAGE_LOGICAL_READ,

SMC_STAT_VALUE_SAMPLE };
SMC_DATAITEM_STRUCTP dataItemHandle = &dataItem;
SMC_VIEW_ID viewId;
SMC_VIEW_IDP viewHandle = &viewId;

if (smc_create_view(clientId,
dataItemHandle,
1, /* just one dataItem */
NULL, /* this is a Monitor Server view */
viewIdHandle) != SMC_RET_SUCCESS)

{
printf("smc_create_view failed\n");
/* do some cleanup */

}

Usage • Refer to Chapter 2, “Data Items and Statistical Types” for rules for using
views with live views.

• When called against a Historical Monitor connection, smc_create_view
must be preceded by a call to smc_create_recording_session or
smc_create_playback_session.

• When used in Historical Server during the definition of a recording
session, it defines a view to be recorded by Historical Server during the
recording session.

• When used in Historical Server during a playback session, it selects a view
for playback from those previously recorded in recording session(s). If the
playback session uses more than one input session, then the selected view
must exist in all input sessions and use the same name, data items, and
filters.

• Depending on whether the playback session was created for “raw” or
summarizing playback, the playback view may or may not include certain
data items from the original view. See the Adaptive Server Enterprise
Monitor Historical Server User’s Guide for more information on the
hs_create_playback_view command.

Valid server modes
Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 157

Errors

See also smc_create_recording_session, smc_create_playback_session,
smc_initiate_recording, smc_initiate_playback, smc_drop_view

smc_drop_alarm
Description Removes an alarm on a data item in a view.

Syntax SMC_RETURN_CODE smc_drop_alarm
(SMC_CONNECT_ID clientId,
SMC_VIEW_ID viewId,
SMC_ALARM_ID alarmId)

Parameters clientId
identifies the connection.

viewId
identifies a view created on the connection.

alarmId
identifies the alarm.

Return value

Examples The following example assumes that:

• You have created a connection and have a clientId.

• You have created a view on that connection and have a viewId.

• You have created an alarm on that view and have an alarmId.

Error Indicates

SMC_RET_INVALID_API_FUNC_SEQUENCE Invalid calling sequence of
Monitor Client Library
functions

SMC_RET_INVALID_DINAME Invalid data item

SMC_RET_INVALID_DI_STATTYPE Invalid data item statistic type

SMC_RET_INSUFFICIENT_MEMORY Insufficient memory

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_BUSY Function not executed, connection is busy.

SMC_RET_INVALID_CONNECT Connection does not exist.

smc_drop_filter

158 Monitor Client Library

if (smc_drop_alarm(clientId,
viewId,
alarmId) != SMC_RET_SUCCESS)

{
printf("smc_drop_alarm_failed\n");
exit(1);

}

Usage You cannot drop an alarm created while defining a Historical session (that is,
when the connection mode is SMC_SERVER_M_HISTORICAL).

Valid server modes

Errors

See also smc_create_alarm_ex, smc_drop_view

smc_drop_filter
Description Removes a filter on a data item.

Syntax SMC_RETURN_CODE smc_drop_filter
(SMC_CONNECT_ID clientId,
SMC_VIEW_ID viewId,
SMC_FILTER_ID filterId)

Parameters clientId
identifies the connection.

viewId
identifies a view created on the connection.

filterId
identifies the filter to be dropped.

Return value

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL No

Error Indicates

SMC_RET_INVALID_VIEWID Function failed.

SMC_RET_INVALID_ALARMID Alarm does not exist.

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 159

Examples The following example assumes that:

• You have created a connection and have a clientId.

• You have created a view on that connection and have a viewId.

• You have created a filter on that view and have a filterId.

if (smc_drop_filter(clientId,
 viewId,
 filterId) != SMC_RET_SUCCESS)
 {
 printf("smc_drop_filter_failed\n");
 /* do some cleanup */
 }

Usage • Dropping a filter takes effect at the next call to smc_refresh following the
call to smc_drop_filter.

• You cannot drop a filter created while defining a Historical Server session
(that is, when the connection mode is
SMC_SERVER_M_HISTORICAL).

Valid server modes

Errors

See also smc_create_filter, smc_drop_view

smc_drop_view
Description Removes a view from a connection.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

Return value Indicates

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL No

Error Indicates

SMC_RET_INVALID_VIEWID View does not exist.

SMC_RET_INVALID_FILTERID Filter does not exist.

smc_drop_view

160 Monitor Client Library

Syntax SMC_RETURN_CODE smc_drop_view
(SMC_CONNECT_ID clientId,
SMC_VIEW_ID viewId)

Parameters clientId
identifies the connection.

viewId
identifies a view created on the connection.

Return value

Examples The following example assumes that:

• You have created a connection and have a clientId.

• You have created a view on that connection and have a viewId.

if (smc_drop_view(clientId,
viewId) != SMC_RET_SUCCESS)

{
printf("smc_drop_view_failed\n");
/* do some cleanup */

}

Usage • All alarms and filters associated with the data items in the view are
dropped.

• You cannot drop a view created on a Historical Server session (that is,
when the connection mode is SMC_SERVER_M_HISTORICAL).

Valid server modes

Error

See also smc_create_view, smc_drop_alarm, smc_drop_filter

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL No

Error Indicates

SMC_RET_INVALID_VIEWID View does not exist.

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 161

smc_get_command_info
Description Retrieves detailed information about an alarm or error notification.

Syntax SMC_RETURN_CODE smc_get_command_info
(SMC_CONNECT_ID clientId,
SMC_COMMAND_ID commandId,
SMC_INFO_TYPE infoType,
SMC_VALUE_UNIONP infoValue,
SMC_SIZETP outputLengthHandle)

Parameters clientId
identifies the connection.

commandId
identifies an invocation of a callback function.

infoType
describes the type of requested information. See Table 3-3 on page 129.

infoValue
pointer to an SMC_VALUE_UNION structure receiving the value of
infoType.

outputLengthHandle
a pointer to an integer variable. Upon a successful call to
smc_get_command_info, the Monitor Client Library writes into this variable.
The actual length, in bytes, of the data to be copied into *infoValue (not
including the null-terminator byte). If the infoValue datatype is not
SMC_CHARP, this parameter is ignored. Pass null if the information is not
desired.

Return value

Examples This example assumes that:

• An error callback function is executing.

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_API_FUNCTION Invalid use of obsolete and replacement
functions within the same program.

SMC_RET_INVALID_COMMAND Instance of command does not exist.

SMC_RET_INVALID_CONNECT Connection does not exist.

SMC_RET_INVALID_INFOTYPE Invalid context for requested
information type.

SMC_RET_INVALID_PARAMETER Invalid parameter value.

smc_get_command_info

162 Monitor Client Library

• You have created a connection and have a clientId.

• The example code is being used in the context of a Monitor Client Library
API callback function, which supplies the commandId.

SMC_VALUE_UNION myValue;
SMC_VALUE_UNIONP myValuePtr = &myValue;
if (smc_get_command_info(clientId,

commandId,
SMC_INFO_ERR_NUM,
myValuePtr,
NULL) != SMC_RET_SUCCESS)

{
printf("smc_get_command_info failed\n");
/* do some cleanup */

}

Usage • For the definition of an SMC_VALUE_UNION structure, see “Union:
SMC_VALUE_UNION” on page 236.

• For data of type SMC_CHARP, stringValue points to the value. The
Monitor Client Library allocates the memory for this string and the calling
application must deallocate it using free().

• To retrieve just the length in bytes of a string, pass null for infoValue and
a valid pointer for outputLengthHandle.

• Table 3-6 lists the command infoType and associated datatype:

Table 3-6: Monitor Client Library command information types

Information type infoValue datatype Available

SMC_INFO_ALARM_ACTION_DATA SMC_CHARP In an alarm callback function

SMC_INFO_ALARM_ALARMID SMC_SIZET In an alarm callback function

SMC_INFO_ALARM_CURRENT_VALUE Depends on the data item and
statistic type combination.
(See Chapter 2, “Data Items
and Statistical Types.”)

In an alarm callback function

SMC_INFO_ALARM_DATAITEM SMC_VOIDP In an alarm callback function

SMC_INFO_ALARM_ROW SMC_SIZET In an alarm callback function

SMC_INFO_ALARM_THRESHOLD_VALUE Depends on data item/statistic
type combination. (See
Chapter 2, “Data Items and
Statistical Types.”)

In an alarm callback function

SMC_INFO_ALARM_TIMESTAMP SMC_CHARP In an alarm callback function

SMC_INFO_ALARM_VALUE_DATATYPE SMC_INT In an alarm callback function

SMC_INFO_ALARM_VIEWID SMC_SIZET In an alarm callback function

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 163

Valid server modes

Errors

This function does not employ error callback functions.

See also smc_create_alarm_ex

smc_get_dataitem_type
Description Returns the datatype for the specified data item.

Syntax SMC_RETURN_CODE smc_get_dataitem_type
(SMC_DATAITEM_STRUCTP dataItemHandle,
SMC_DATAITEM_TYPEP ptrType)

Parameters dataItemHandle
pointer to data item and statistical type.

ptrType
pointer to data value type.

Return value

Examples SMC_DATAITEM_STRUCT dataItem =
{ SMC_NAME_PAGE_LOGICAL_READ,

SMC_STAT_VALUE_SAMPLE };
SMC_DATAITEM_STRUCTP dataItemHandle = &dataItem;
SMC_DATAITEM_TYPE dataItemType;

SMC_INFO_ERR_MAPSEVERITY SMC_SIZET In an error callback function

SMC_INFO_ERR_MSG SMC_CHARP In an error callback function

SMC_INFO_ERR_NUM SMC_SIZET In an error callback function

SMC_INFO_ERR_SEVERITY SMC_SIZET In an error callback function

SMC_INFO_ERR_SOURCE SMC_SIZET In an error callback function

SMC_INFO_ERR_STATE SMC_SIZET In an error callback function

Information type infoValue datatype Available

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

smc_get_dataitem_value

164 Monitor Client Library

SMC_DATAITEM_TYPEP dataItemTypeHandle = &dataItemType
;

if (smc_get_dataitem_type(dataItemHandle,
dataItemTypeHandle) != SMC_RET_SUCCESS)

{
printf("smc_get_dataitem_type failed\n");
/* do some cleanup */

}

Usage • The data item types are as follows:

• If you supply a data item and statistical type that Monitor Client Library
does not support, the output parameter type is set to
SMC_DI_TYPE_NONE.

See also smc_create_view

smc_get_dataitem_value
Description Returns data after a refresh. This data is returned one data item of one row at a

time.

Syntax SMC_RETURN_CODE smc_get_dataitem_value
(SMC_CONNECT_ID clientId,
SMC_VIEW_ID viewId,
SMC_DATAITEM_STRUCTP dataItemHandle,
SMC_SIZET row,
SMC_VALUE_UNIONP returnVal)

Parameters clientId
identifies the connection.

Data item type Description

SMC_DI_TYPE_CHARP Pointer to a character string.

SMC_DI_TYPE_DATIM Sybase date and time.

SMC_DI_TYPE_DOUBLE Double-precision floating-point number.

SMC_DI_TYPE_ENUMS An enumerated datatype, specific to the data
item. Enumerated types are defined in the
mctype.sh include file and in the Appendix,
“Datatypes and Structures.”

SMC_DI_TYPE_INT Integer.

SMC_DI_TYPE_LONG Long integer.

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 165

viewId
identifies a view created on the connection.

dataItemHandle
pointer to data item and statistic type.

row
row number of requested data.

returnVal
return value that contains the value of one data item.

Return value

Examples The following example assumes that:

• You have created a connection and have a clientId.

• You have created a view on that connection and have a viewId.

• The view contains the dataItem defined in the example.

• You have successfully executed a refresh call.

• The row count is greater than zero.

SMC_DATAITEM_STRUCT dataItem =
{ SMC_NAME_PAGE_LOGICAL_READ,

SMC_STAT_VALUE_SAMPLE };
SMC_DATAITEM_STRUCTP dataItemHandle = &dataItem;
SMC_VALUE_UNION returnValue;
SMC_VALUE_UNIONP returnValueHandle = &returnValue;
if (smc_get_dataitem_value(clientId,

viewId,
dataItemHandle,
0,/* row number */
returnValueHandle) != SMC_RET_SUCCESS)

{
printf("smc_get_dataitem_value failed\n");
/* do some cleanup */

}

Usage • The first row of data is indexed by row number zero, the second by one,
and so on.

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT No connection exists with the specified ID.

smc_get_row_count

166 Monitor Client Library

• For data of type SMC_DI_TYPE_CHARP, the Monitor Client Library
allocates the memory. The calling application must deallocate the memory
using free().

• See Appendix B, “Datatypes and Structures” for a listing of members in
SMC_VALUE_UNION.

• See the mctype.sh include file or Appendix B, “Datatypes and Structures”
for the values for enumerated types.

Errors

See also smc_refresh_ex, smc_get_dataitem_type

smc_get_row_count
Description Returns the number of rows returned by a given view after a refresh.

Syntax SMC_RETURN_CODE smc_get_row_count
(SMC_CONNECT_ID clientId,
SMC_VIEW_ID viewId,
SMC_SIZETP rowCountHandle)

Parameters clientId
identifies the connection.

viewId
identifies a view created on the connection.

rowCountHandle
pointer to a variable into which Monitor Client Library writes the number of
rows in a view.

Return value

Error Indicates

SMC_RET_INVALID_VIEWID View does not exist.

SMC_RET_INVALID_DINAME Invalid data item.

SMC_RET_INVALID_DISTAT Invalid data item statistic type.

SMC_RET_INVALID_PARAMETER Invalid parameter.

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 167

Examples The following example assumes that:

• You have created a connection and have a clientId.

• You have created a view on that connection and have a viewId.

• You have successfully executed a refresh call.

SMC_SIZET rowCount;
SMC_SIZETP rowCountHandle = &rowCount;

if (smc_get_row_count(clientId,
nviewId,
rowCountHandle) != SMC_RET_SUCCESS)

{
printf("smc_get_row_count failed\n");
/* do some cleanup */

}

Usage The first row of data is indexed by row number 0, the second by 1, and so on.

Valid server modes

Error

See also smc_refresh_ex, smc_get_dataitem_value

smc_get_version_string
Description Returns the Monitor Client Library version number.

Syntax SMC_RETURN_CODE smc_get_version_string
(SMC_CHARPP versionBuffer)

Parameters versionBuffer
return value that contains the version string.

Return value

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes (during playback)

Error Indicates

SMC_RET_INVALID_VIEWID View does not exist.

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

smc_initiate_playback

168 Monitor Client Library

Examples SMC_CHARP versionBufferHandle;
if (smc_get_version_string(&versionBufferHandle)

!= SMC_RET_SUCCESS)
{

printf("smc_get_version_string failed\n");
/* do some cleanup */

}
printf("%s\n",versionBufferHandle);
free(versionBufferHandle);

Usage • The Monitor Client Library allocates the memory for this string. The
calling application must deallocate this memory using free().

• This function does not require a connection.

smc_initiate_playback
Description Concludes the definition of views for a playback session on Historical Server,

and prepares to start playback.

Syntax SMC_RETURN_CODE smc_initiate_playback
(SMC_CONNECT_ID clientId)

Parameters clientId
identifies the connection.

Return value

Examples This example assumes that:

• You have created a connection to Historical Server and have a clientId.

• You have successfully executed smc_create_playback_session.

• You have created at least one view on the connection.

if (smc_initiate_playback(clientId) !=
SMC_RET_SUCCESS)

{
printf("smc_initiate_playback failed\n");
/* do some cleanup */

}

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 169

Usage • The data for a playback session is defined by calls to smc_create_view,
made after a call to smc_create_playback_session and before the call to
smc_initiate_playback.

• If this playback session was defined to create a new session from playback
(that is, if smc_create_playback_session was called with playbackTarget
SMC_HS_TARGET_FILE), then smc_initiate_playback creates the new
session. The application must then call smc_terminate_playback to
conclude the playback session.

• If the playback session was defined to play back data to the application
(that is, if smc_create_playback_session was called with playbackTarget
SMC_HS_TARGET_CLIENT), then the application calls smc_refresh_ex
to retrieve each playback sample, and smc_terminate_playback to conclude
the playback session.

• After a successful call to smc_terminate_playback, the Historical Server
connection can be used to define another playback session, or to create a
recording session.

Valid server modes

Errors

See also smc_create_view, smc_create_playback_session, smc_refresh_ex,
smc_terminate_playback

smc_initiate_recording
Description Completes the definition of a recording session against Historical Server, that

is, an SMC_SERVER_M_HISTORICAL connection only.

Syntax SMC_RETURN_CODE smc_initiate_recording
(SMC_CONNECT_ID clientId)

Parameters clientId
identifies the connection.

Mode Availability

SMC_SERVER_M_LIVE No

SMC_SERVER_M_HISTORICAL Yes

Error Indicates

SMC_RET_INVALID_SVR_MODE Invalid server mode.

SMC_RET_INTERNAL_ERROR Internal error.

smc_initiate_recording

170 Monitor Client Library

Return value

Examples The following example assumes that:

• You have created a connection to Historical Server and have a clientId.

• You have successfully executed smc_create_recording_session.

• You have created at least one view on the connection.

if (smc_initiate_recording(clientId) !=
SMC_RET_SUCCESS)

{
printf("smc_initiate_recording failed\n");
/* do some cleanup */

}

Usage • The data for the recording session is defined by calls to smc_create_view
and smc_create_filter that are made after a call to
smc_create_recording_session and before the call to
smc_initiate_recording.

• After a successful call to smc_initiate_recording, the Historical Server
connection can be used to define another recording session, or to create a
playback session.

Valid server modes

Errors

See also smc_create_alarm_ex, smc_create_filter, smc_create_view,
smc_create_recording_session, smc_terminate_recording_session

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

Mode Availability

SMC_SERVER_M_LIVE No

SMC_SERVER_M_HISTORICAL Yes

Error Indicates

SMC_RET_INVALID_SVR_MODE Invalid server mode.

SMC_RET_INTERNAL_ERROR Internal error.

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 171

smc_refresh_ex
Description Obtains a sampling of data for all views on a connection.

Syntax SMC_RETURN_CODE smc_refresh_ex
(SMC_CONNECT_ID clientId,
SMC_SIZET step)

Parameters clientId
identifies the connection.

step
during playback in a Historical Server connection, allows skipping ahead a
specified number of samples. Ordinarily, on playback, step is +1 to retrieve
the next sample (negative step values are not allowed).

Does not apply for live connections; use SMC_UNUSED.

Return value

Examples This example assumes that:

• You have created a connection and have a clientId.

• You have created at least one view on that connection.

if (smc_refresh_ex(clientId,SMC_UNUSED)
!= SMC_RET_SUCCESS)

{
printf("smc_refresh_ex failed\n");
/* do some cleanup */

}

Usage • In a playback session, smc_refresh_ex must be preceded by a call to
smc_initiate_playback.

• If you try to refresh a view at the same time someone creates a database,
the refresh may fail.

• A refresh for a view may fail if one or more databases on Adaptive Server
are in single-user mode.

Valid server modes

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

Mode Availability

SMC_SERVER_M_LIVE Yes

smc_terminate_playback

172 Monitor Client Library

Errors

See also smc_connect_ex

smc_terminate_playback
Description Concludes a playback session on Historical Server.

Syntax SMC_RETURN_CODE smc_terminate_playback
(SMC_CONNECT_ID clientId)

Parameters clientId
identifies the connection.

Return value

Examples This example assumes that:

• You have created a connection to Historical Server and have a clientId.

• You have successfully executed smc_create_playback_session.

• You have created at least one view on the connection.

• You have successfully executed smc_initiate_playback.

if (smc_terminate_playback(clientId)
!= SMC_RET_SUCCESS)

{
printf("smc_terminate_playback failed\n");
/* do some cleanup */

}

SMC_SERVER_M_HISTORICAL Yes (for playback)

Error Indicates

SMC_RET_INVALID_API_FUNCTION Invalid use of obsolete and replacement
functions in program.

SMC_RET_INVALID_SVR_MODE Invalid server mode.

Mode Availability

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT Connection does not exist.

CHAPTER 3 Monitor Client Library Functions

Programmer’s Guide 173

Usage • After a successful call to smc_terminate_playback, the Historical Server
connection can be used to create another playback session, or to define a
recording session.

Valid server modes

Errors

See also smc_create_playback_session, smc_initiate_playback

smc_terminate_recording
Description Cancels a recording session on a Historical Server connection.

Syntax SMC_RETURN_CODE smc_terminate_playback(
SMC_CONNECT_ID clientId,
SMC_SESSION_ID sessionId
SMC_HS_SESS_DELETE_OPT deleteOption,
)

Parameters clientId
identifies the Monitor connection.

sessionId
identifies the recording session to cancel.

deleteOption
specifies whether Historical Server should delete the data files, if any,
associated with the session. The choices are SMC_HS_DELETE_FILES
and SMC_HS_RETAIN_FILES.

This parameter is ignored if the session has not been initiated or if it has not
started recording.

Return value

Mode Availability

SMC_SERVER_M_LIVE No

SMC_SERVER_M_HISTORICAL Yes

Error Indicates

SMC_RET_INVALID_SVR_MODE Invalid server mode.

SMC_RET_INTERNAL_ERROR Internal error.

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

smc_terminate_recording

174 Monitor Client Library

Examples This example assumes that:

• You have created a connection to Historical Server and have a clientId.

• You have successfully executed smc_create_recording_session and have a
sessionId.

if (smc_terminate_recording(
clientId,
sessionId,

SMC_HS_DELETE_FILES)
!= SMC_RET_SUCCESS)

{
printf("smc_terminate_recording failed\n");
/* do some cleanup */

}

Usage • If the recording session had already been initiated, then
smc_terminate_recording cancels the session. If the session had been
scheduled, but had not actually started recording, then
smc_terminate_recording causes the session to be unscheduled. If the
session had actually started recording, then smc_terminate_recording
causes the session to end prematurely, that is, before the scheduled end
time.

• If the recording session had not been initiated, then
smc_terminate_recording cancels definition of the recording session. After
a successful call to smc_terminate_recording, the HISTORICAL
connection may be used to create another recording session, or to define a
playback session.

Valid server modes

Errors

See also smc_create_recording_session, smc_initiate_recording

SMC_RET_INVALID_CONNECT Monitor connection does not exist.

Return value Indicates

Mode Availability

SMC_SERVER_M_LIVE No

SMC_SERVER_M_HISTORICAL Yes

Error Indicates

SMC_RET_INVALID_SVR_MODE Invalid server mode.

SMC_RET_INTERNAL_ERROR Internal error.

Programmer’s Guide 175

C H A P T E R 4 Building a Monitor Client Library
Application

This chapter contains information about building a Monitor Client Library
application.

This chapter describes the steps required to build a Monitor Client Library
application, including:

• Compiling

• Linking

• Running

Two sample programs are provided with the Monitor Client Library:

• testmon, which obtains data from a Monitor Server

• testhist, which creates a Historical Server recording session and
places data into a file

You can use the build procedures supplied with these sample applications
as a model for other applications. The sample programs are discussed
separately for UNIX and Windows platforms.

Note The following instructions assume that the Monitor Client Library
is installed in the Sybase root directory, and that the SYBASE
environment variable is set to this root directory.

Topic Page
Building on UNIX platforms 176

Building on Windows platforms 178

Building on UNIX platforms

176 Monitor Client Library

Building on UNIX platforms
This section explains how to compile, link, run, and build the sample
applications for UNIX platforms.

Compiling the application
Each source file that uses the Monitor Client Library must include the
following line:

#include "mcpublic.h"

The header files for Monitor Client Library are installed, by default, in the
OCS-15_0/include directory of the directory indicated by the SYBASE
environment variable.

Open Client header files, which are needed for compilation, are also installed
in this directory. Include this directory in the compilation command line. For
example, you could enter:

cc -I$SYBASE/OCS-15_0/include myprog.c

If the header files have been installed in directories other than the default,
substitute those directories in the compilation command line.

Linking the application
The Monitor Client Library is installed in the OCS-15_0/lib directory of the
directory indicated by the SYBASE environment variable. In addition, Open
Client libraries, which are required for linking with the Monitor Client Library,
are installed in the OCS-15_0/lib directory. To find the names of the libraries
with which you must link your application, see the make files supplied with the
examples.

CHAPTER 4 Building a Monitor Client Library Application

Programmer’s Guide 177

Running the application
To run a Monitor Client Library application, set the SYBASE environment
variable to the Open Client installation directory that contains the locales,
charsets, and lib directories. These directories are loaded during Monitor
Client Library installation.

Note Adaptive Server and Monitor Server must be configured and running on
your network before you run a Monitor Client Library application.

Building the sample applications
The sample programs and the procedures to build them are installed, by
default, in the $SYBASE/OCS-15_0/sample/monclt directory. The two versions
of the build procedure are:

• Makefile, which uses the native ANSI compiler and linker

• Makefile_gcc, which uses the GNU C compiler and linker

To build and run the sample programs, use the following steps:

1 If the entries for the Adaptive Server, Monitor Server, and Historical
Server that you intend to use with the examples do not appear in your
interfaces file, add the entries. You can use monclt/bin/dsedit to edit the
interfaces file.

2 Copy the sample files from the monclt/sample directory to another
directory to keep the original sample for future reference and enable you
to edit your own copy.

3 If you are not already there, change your directory to the directory that
contains your copies of the sample files.

4 Edit the example.h file to supply the names of:

• Adaptive Server

• Monitor Server

• Historical Server

• Login name on Adaptive Server

• Password

• interfaces file location

Building on Windows platforms

178 Monitor Client Library

If you are using the default interfaces file located in the directory indicated
by the SYBASE environment variable, you can accept the default null
string ("") for the interfaces file name. If you are not using the default
interfaces file, specify the full path name of the interfaces file.

5 Set the MONCLTLIBDIR environment variable to the root installation
directory for Monitor Client Library, which is by default, the OCS-15_0
directory of the Sybase root installation directory:

setenv MONCLTLIBDIR $SYBASE/OCS-15_0

6 You can edit the make files and change the value of the SYBASE variable
to point to a different Sybase root directory. By default, it points to
$MONCLTLIBDIR.

7 Use the make utility to build the test programs.

If you use the native UNIX make utility, enter:

make all

If you use the GNU compiler, enter:

make -f Makefile_gcc

8 Run the sample programs.

To run the program that retrieves and displays live data from Monitor
Server, enter:

./testmon

To run the program that creates a recording session using Historical
Server, enter:

./testhist

Building on Windows platforms
This section describes how to compile, link, run, and build the sample
applications on a Windows platform.

Compiling the application
To compile a Monitor Client Library application on a Windows platform:

CHAPTER 4 Building a Monitor Client Library Application

Programmer’s Guide 179

1 Include the following line in each source file that uses Monitor Client
Library:

#include "mcpublic.h"

2 Include the path of the directory that contains the Monitor Client Library
and Open Client header files in the list of directories (sometimes called the
Include path) in which the C compiler preprocessor looks for header files.
The header files for Monitor Client Library and Open Client are installed,
by default, in the %SYBASE%\OCS-15_0\inlcude directory.

3 Set the compiler preprocessor option to define the _WIN and WIN32
preprocessor macros.

4 Set the code generation option to use the __cdecl calling convention.

Note To use a calling convention other than the default, you must declare it in
each callback function that uses it.

Linking the application
The Monitor Client Library is contained in the smcapi32.lib file, which is
installed in the %SYBASE%\OCS-15_0\lib directory.

You can specify the full path name of the library or the smcapi32.lib file name
in the list of libraries for the linker to use for your application. However, if you
include only the file name, you must include the C:\SYBASE\LIB directory in
the list of directories in which the linker looks for libraries.

Running the application
Refer to the release bulletin for Adaptive Server Enterprise Monitor for a list
of software required to run a Monitor Client Library application.

Building on Windows platforms

180 Monitor Client Library

Define the SYBASE environment variable to indicate the directory where the
Sybase client software has been installed. The ini directory within this
directory must contain the sql.ini file. Use the SQLEDIT utility to set up this file
to include the names of any Adaptive Serverinstallations, Monitor Servers, and
(optionally) Historical Servers that your application uses.

Note Adaptive Server and Monitor Server must be configured and running on
your network before you run a Monitor Client Library application.

Building the sample applications
The sample programs and the build procedures to build them are installed in
the %SYBASE%\OCS-15_0\SAMPLE\MONCLT\TESTMON and
%SYBASE%\OCS-15_0\SAMPLE\MONCLT\TESTHIST directories.

For each of the sample programs, there is a project (.mak) file. For applications
to be built using Microsoft Visual C/C++ version 4.0 and to be run under
Windows NT or Windows 95 as a console application, the two project files are
TESTMO32.MAK and TESTHI32.MAK.

To build and run the sample programs, use the following steps:

1 Modify the PATH environment variable to include the C:\SYBASE\DLL
directory in which the Sybase DLLs were installed.

2 If you have not already done so, set the SYBASE environment variable to
the Sybase \SYBASE root installation directory.

3 If you do not have the appropriate server names in the sql.ini file, add the
entries for the Adaptive Server installation, Monitor Server, and Historical
Server that you intend to use to the C:\SYBASE\INI\SQL.INI file.

4 Edit the %SYBASE%\OCS-15_0\sample\monclt\testmon\example.h and
%SYBASE%\OCS-15_0\sample\monclt\testhist\example.h files to supply
the names of the Adaptive Server, Monitor Server, Historical Server (for
TESTHIST only), login name on Adaptive Server, and password.

5 Open the project (.mak) file for the sample application you want to build.

• To use the program that tests a live connection to Monitor Server,
enter:

%SYBASE%\OCS-15_0\sample\monclt\testhist\testhi32.mac

• To use the program that tests Historical Server, enter:

CHAPTER 4 Building a Monitor Client Library Application

Programmer’s Guide 181

%SYBASE%\OCS-15_0\sample\monclt\testhist\testhi32.mak

6 If the Monitor Client Library is installed in a directory other than
\SYBASE:

• Modify the compiler preprocessor option to include the INCLUDE
subdirectory of the installation directory, instead of the default
\SYBASE\INCLUDE directory, in the list of directories in which the C
compiler preprocessor looks for header files.

• Edit the list of libraries for the linker to use for the application so that
it specifies the full path name of the library, instead of the
\SYBASE\LIB\SMCAPI32.LIB default directory path name.

7 Build the project.

8 Run the application.

To run applications under Windows NT or Windows 95, enter the name of
the executable program from a Command Prompt window. For example:

%SYBASE%\OCS-15_0\SAMPLE\MONCLT\TESTMON\WinDebug\TESTMO32

Building on Windows platforms

182 Monitor Client Library

Programmer’s Guide 183

C H A P T E R 5 Monitor Client Library
Configuration Instructions

This chapter describes the installation and configuration process for
Monitor Client Library.

Loading Monitor Client Library
To move the Monitor Client Library files from the distribution media onto
your machine, use InstallShield. This utility allows you to load all of the
products you have ordered onto one machine in one InstallShield session
or to distribute your software among different licensed machines by
running separate InstallShield sessions.

Using InstallShield
If you have not already done so, follow the instructions in the installation
guide to load Monitor Client Library onto your machine.

After loading the software, return to this chapter to complete the
installation and configuration of Monitor Client Library.

Topic Page
Loading Monitor Client Library 183

Results of the load 184

Confirming your login account and permissions 184

Modifying the interfaces file 184

Setting up the user environment 185

Using Monitor Client Library 187

Results of the load

184 Monitor Client Library

Results of the load
The InstallShield utility places the Monitor Client Library software in the load
directory you specified to InstallShield during the installation process. The
default load directory is the $SYBASE directory.

The load directory contains all software and other files for Monitor Client
Library, including the locales and charsets subdirectories at the correct version
level for Monitor Client Library.

Confirming your login account and permissions
To perform the tasks described in this chapter, you must be logged in using the
“sybase” account or some other account that has read, write, and search
(execute) permissions on the load directory. The load directory is the directory
name you supplied to InstallShield when you loaded the Monitor Client
Library software onto your machine. The default load directory is the
$SYBASE directory.

Modifying the interfaces file
Before a Monitor Client Library application can run, it must have access to an
interfaces file that contains entries for Adaptive Server Enterprise Monitor.
The interfaces file can exist on a local or remote machine, so long as the
Monitor Client Library application has access to the file system containing the
interfaces file.

If an interfaces file does not exist on a machine where a Monitor Client Library
application will run and an interfaces file is not accessible remotely, you must
create one.

The interfaces file accessed by a Monitor Client Library application must
contain entries for the following servers:

• The Adaptive Server installations being monitored

• The Monitor Server(s) that Monitor Viewer is using

• Optionally, the Monitor Historical Server if one is being used

CHAPTER 5 Monitor Client Library Configuration Instructions

Programmer’s Guide 185

The entries that you add to the interfaces file accessed by the Monitor Client
Library application must match the entries that already exist in the interfaces
file for the servers, on the server machine. Those entries define the server
names, their host machine names, and their port numbers. You must use the
same values on the client machine. See the person who installed Monitor
Server and Monitor Historical Server to obtain the entries for the servers.

The general format for additions to a client interfaces file is:

sql_server_name
query entry
master entry
monitor_server_name
query entry
master entry
historical_server_name
query entry
master entry

Use the dsedit utility or a text editor to add entries to the interfaces file.

If you use a text editor to update the interfaces file, entries must comply with
the following rules:

• The entry cannot contain blank lines.

• The server_name line must start in the first column of the interfaces file.

• The entries for query and master must have one tab preceding them. You
must indent the query and master lines using the Tab key; do not use the
space bar to indent these two lines.

For information about editing interfaces files, specifics about the interfaces file
format, and details about parameters within an interfaces file entry, see
Configuring Adaptive Server Enterprise for your platform.

Setting up the user environment
On start-up, a Monitor Client Library application must:

• The correct version of the locales and charsets directories

• An interfaces file

Setting up the user environment

186 Monitor Client Library

The SYBASE environment variable defines the location of the locales and
charsets directories. The SYBASE variable also defines the default location of
the interfaces file; however, the Monitor Client Library application might need
to override that default location.

Setting the SYBASE environment variable
When a user starts a Monitor Client Library application, the directory pointed
to by the SYBASE environment variable must contain the correct version of
the locales and charsets directories. Therefore, users must set their SYBASE
environment variable to point to the monclt subdirectory of the load directory
(the directory where the InstallShield placed Monitor Client Library software).

Overriding the default location of the interfaces file
The default location of the interfaces file is the directory pointed to by the
SYBASE environment variable. Since the SYBASE environment variable
must point to the load directory, then one of the following statements also must
be true when users run a Monitor Client Library application:

• The interfaces file must be located in the load directory, or

• The Monitor Client Library application code must override the default
location of the interfaces file.

To override the default location, the Monitor Client Library application
must call the smc_connect function, specifying an explicit value in the
interfaceFile parameter. In most cases, it would be appropriate to obtain
the value of the interfaceFile parameter from the user at start-up time, as
a command-line argument, from an X resource file, or from an interactive
dialog box.

For more information about the smc_connect function, see the Adaptive Server
Enterprise Monitor Client Library Programmer’s Guide.

CHAPTER 5 Monitor Client Library Configuration Instructions

Programmer’s Guide 187

Using Monitor Client Library
After completing the installation and setting up the user environment, you can
build and run the sample programs provided. For more details on the sample
programs, see the Adaptive Server Enterprise Monitor Client Library
Programmer’s Guide.

If you have not already done so, read the Adaptive Server Enterprise Monitor
Client Library Release Bulletin for your platform.

Notes • Adaptive Server and Monitor Server must be configured and running on
your network before you run a Monitor Client Library application.

• For maximum responsiveness, Sybase recommends that Monitor Client
applications run on different machines from the one on which Adaptive
Server and Monitor Server are running.

Using Monitor Client Library

188 Monitor Client Library

Programmer’s Guide 189

A P P E N D I X A Examples of Views

Topic Page
Cache performance summary 191

Current statement summary 192

Database object lock status 192

Database object page I/O 193

Data cache activity for individual caches 194

Data cache statistics for session 194

Data cache statistics for sample interval 195

Device I/O for session 195

Device I/O for sample interval 196

Device I/O performance summary 196

Engine activity 197

Lock performance summary 197

Network activity for session 198

Network activity for sample interval 198

Network performance summary 199

Procedure cache statistics for session 200

Procedure cache statistics for sample interval 200

Procedure page I/O 201

Process activity 201

Process database object page I/O 202

Process detail for locks 203

Process detail page I/O 204

Process locks 205

Process page I/O 205

Process state summary 206

Process stored procedure page I/O 206

Server performance summary 207

Stored procedure activity 207

Transaction activity 208

190 Monitor Client Library

This appendix contains examples of views. These views also appear in the
sample views file installed with Historical Server.

You may find that some of these views collect exactly the information that you
are interested in, while others can serve as templates for building the views that
you need.

Some of the sample views differ from one another only in the time interval over
which the data is accumulated (either the duration of the most recent sample
interval or the entire session). Other views may contain similar data items, but
in a different order. The order in which data items appear in a view is
significant because the data is sorted according to the key field. The first key
field appears in a view’s definition and acts as the primary sort key, the second
key field is the secondary sort key, and so on.

#include mcpublic.h

SMC_VOID
ErrorCallback(
SMC_SIZET id,
SMC_SIZET error_number,
SMC_SIZET severity,
SMC_SIZET map_severity,
SMC_SIZET source,
SMC_CCHARP error_msg,
SMC_SIZET state);

SMC_VOID
RefreshCallback(
SMC_SIZET id,
SMC_VOIDP user_msg,
SMC_CHARP msg);
SMC_CHARP
SMC_DATAITEM_NAME value);

SMC_CHARP
LookupDataItemStat(
SMC_DATAITEM_STATTYPE value);

SMC_CHARP
LookupLockResult(
SMC_LOCK_RESULT value);

SMC_CHARP
LookupLockResultSummary(
SMC_LOCK_RESULT_SUMMARY value);

APPENDIX A Examples of Views

Programmer’s Guide 191

SMC_CHARP
LookupLockStatus(
SMC_LOCK_STATUS value);
SMC_CHARP
LookupLockType(
SMC_LOCK_TYPE value);

SMC_CHARP
LookupObjectType(
SMC_OBJ_TYPE value);

SMC_CHARP
LookupProcessState(
SMC_PROCESS_STATE value);
SMC_INT
main(
SMC_INT argc,
SMC_CHARP argv[])
{

Cache performance summary
This view shows the overall effectiveness of Adaptive Server caches during the
most recent sample interval. It shows the percentage of data page reads that
were satisfied from Adaptive Server data caches and the percentage of requests
for procedure execution that were satisfied from Adaptive Server procedure
cache.

SMC_SIZET cache_perf_sum_count = 2;
SMC_DATAITEM_STRUCT cache_perf_sum_view[] = {
{ SMC_NAME_PAGE_HIT_PCT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_STP_HIT_PCT, SMC_STAT_VALUE_SAMPLE }
};

Current statement summary

192 Monitor Client Library

Current statement summary
This view displays information about the statement that is currently being
executed by Adaptive Server whether it is part of a stored procedure or batch
text. Use a view such as this if you are trying to determine what an application
is doing at a particular point in its execution.

SMC_SIZET cur_stmt_act_count = 11;
SMC_DATAITEM_STRUCT cur_stmt_act_view[] = {
{ SMC_NAME_SPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_STMT_ACT_STP_DB_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_STMT_ACT_STP_DB_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_STMT_ACT_STP_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_STMT_ACT_STP_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_STMT_ACT_STP_TEXT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_STMT_BATCH_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_STMT_CONTEXT_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_STMT_NUM, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_STMT_QUERY_PLAN_TEXT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_STMT_START_TIME, SMC_STAT_VALUE_SAMPLE },
};

Database object lock status
This view shows the status of locks on database objects that are held or being
requested by Adaptive Server processes as of the end of the most recent sample
interval. Each lock is identified by:

• The name and ID of the object being locked

• The name and ID of the database that contains that object

• The page number to which the lock applies (if it is a page lock)

Each Adaptive Server process associated with the lock is also identified by its
login name, Process ID and Kernel Process ID. The type of lock is shown,
together with the current status of the lock and an indication of whether or not
this is a demand lock.

If the lock is being requested by the process, the amount of time that this
process has waited to acquire the lock and the Process ID of the process that
already holds the lock are shown. If the process already holds the lock, the
count of other processes waiting to acquire that lock is shown.

APPENDIX A Examples of Views

Programmer’s Guide 193

SMC_SIZET object_lock_status_count = 14;
SMC_DATAITEM_STRUCT object_lock_status_view[] = {
{ SMC_NAME_DB_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DB_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_OBJ_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_OBJ_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_NUM, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_LOGIN_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_SPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_KPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_LOCK_TYPE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_LOCK_STATUS, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DEMAND_LOCK, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_TIME_WAITED_ON_LOCK, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_BLOCKING_SPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_LOCKS_BEING_BLOCKED_CNT, SMC_STAT_VALUE_SAMPLE }
};

Database object page I/O
This view shows the objects in Adaptive Server databases and the page I/Os
associated with them. It shows the Adaptive Server database name and ID, and
the object names and IDs within each database. For each object, this view
shows the associated logical reads, physical reads, and page writes for both the
most recent sample interval and for the session.

SMC_SIZET object_page_io_count = 10;
SMC_DATAITEM_STRUCT object_page_io_view[] = {
{ SMC_NAME_DB_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DB_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_OBJ_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_OBJ_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_VALUE_SESSION }
};

Data cache activity for individual caches

194 Monitor Client Library

Data cache activity for individual caches
This view shows information about the performance of individual data caches.

For each named cache, including the default data cache, configured in
Adaptive Server, this view collects the cache’s name and the percentage of
page reads for objects bound to the cache that were satisfied from the cache
since the start of the recording session.

This view also shows the:

• Efficiency of the cache’s use of space

• Percentage of times when an attempt to acquire the cache’s spinlock was
forced to wait, since the start of the session

• Number of cache hits and misses for the session

SMC_SIZET data_cache_activity_count = 7;
SMC_DATAITEM_STRUCT data_cache_activity__view[] = {
{ SMC_NAME_DATA_CACHE_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DATA_CACHE_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DATA_CACHE_HIT_PCT, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_DATA_CACHE_EFFICIENCY, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_DATA_CACHE_CONTENTION, SMC_STAT_RATE_SESSION },
{ SMC_NAME_DATA_CACHE_HIT, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_DATA_CACHE_MISS, SMC_STAT_RATE_SESSION }
};

Data cache statistics for session
This view shows the effectiveness of the data caches of Adaptive Server since
the start of the session. It shows the:

• Percentage of requests for page reads that were satisfied from cache for the
session

• Number of logical reads, physical reads, and page writes for the session

• Rate of logical reads, physical reads, and page writes for the session

SMC_SIZET session_page_cache_stats_count = 7;
SMC_DATAITEM_STRUCT session_page_cache_stats_view[] = {
{ SMC_NAME_PAGE_HIT_PCT, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_RATE_SESSION },

APPENDIX A Examples of Views

Programmer’s Guide 195

{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_RATE_SESSION },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_RATE_SESSION }
};

Data cache statistics for sample interval
This view shows the effectiveness of the data caches of Adaptive Server for the
most recent sample interval. It shows the:

• Percentage of requests for page reads that were satisfied from cache for the
most recent sample interval

• Number of logical reads, physical reads, and page writes for the most
recent sample interval

• Rate of logical reads, physical reads, and page writes for the most recent
sample interval

SMC_SIZET sample_page_cache_stats_count = 7;
SMC_DATAITEM_STRUCT sample_page_cache_stats_view[] = {
{ SMC_NAME_PAGE_HIT_PCT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_RATE_SAMPLE }
};

Device I/O for session
This view shows the I/O activity that occurred on Adaptive Server database
devices since the start of the session. It identifies each device by name. Device
I/O levels are presented in two ways: as counts of total device I/Os, reads and
writes since the start of the session, and also as overall rates of total I/Os, reads
and writes per second since the session began.

SMC_SIZET session_device_io_count = 7;
SMC_DATAITEM_STRUCT session_device_io_view[] = {

Device I/O for sample interval

196 Monitor Client Library

{ SMC_NAME_DEV_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DEV_READ, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_DEV_WRITE, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_DEV_IO, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_DEV_READ, SMC_STAT_RATE_SESSION },
{ SMC_NAME_DEV_WRITE, SMC_STAT_RATE_SESSION },
{ SMC_NAME_DEV_IO, SMC_STAT_RATE_SESSION }
};

Device I/O for sample interval
This view shows the I/O activity that occurred on Adaptive Server database
devices during the most recent sample interval. It identifies each device by
name. Device I/O levels are presented in two ways: as counts of total device
I/Os, reads and writes during the most recent sample interval, and also as rates
of total I/Os, reads and writes per second during the sample interval.

SMC_SIZET sample_device_io_count = 7;
SMC_DATAITEM_STRUCT sample_device_io_view[] = {
{ SMC_NAME_DEV_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DEV_IO, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DEV_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DEV_WRITE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DEV_IO, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_DEV_READ, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_DEV_WRITE, SMC_STAT_RATE_SAMPLE }
};

Device I/O performance summary
This view shows reads and writes to database devices by Adaptive Server,
since the start of the session. It shows the:

• Overall rate of reads and writes to database devices since the start of the
session

• Most active database device for that time period

• Rate of reads and writes to the most active device

SMC_SIZET device_perf_sum_count = 3;

APPENDIX A Examples of Views

Programmer’s Guide 197

SMC_DATAITEM_STRUCT device_perf_sum_view[] = {
{ SMC_NAME_DEV_IO, SMC_STAT_RATE_SESSION },
{ SMC_NAME_MOST_ACT_DEV_NAME, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_MOST_ACT_DEV_IO, SMC_STAT_RATE_SESSION }
};

Engine activity
This view shows the level of activity for each active Adaptive Server engine
during the most recent sample interval. This view shows, for each engine, the:

• Percentage of the sample interval when that engine used the CPU

• Number of lock requests

• Number of logical page reads, physical page reads, and page writes that
were generated by the engine during the sample interval

SMC_SIZET engine_activity_count = 6;
SMC_DATAITEM_STRUCT engine_activity_view[] = {
{ SMC_NAME_ENGINE_NUM, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CPU_BUSY_PCT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_LOCK_CNT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_VALUE_SAMPLE }
};

Lock performance summary
This view shows the total number of locks of each type requested and granted
during the most recent sample interval.

SMC_SIZET lock_perf_sum_count = 3;
SMC_DATAITEM_STRUCT lock_perf_sum_view[] = {
{ SMC_NAME_LOCK_TYPE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_LOCK_RESULT_SUMMARY, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_LOCK_CNT, SMC_STAT_VALUE_SAMPLE }
};

Network activity for session

198 Monitor Client Library

Network activity for session
This view shows the network activity over all Adaptive Server network
connections since the start of the session. It shows the:

• Default packet size

• Maximum packet size

• Average packet sizes sent and received since the start of the session

• Number of packets sent

• Number of packets received

• The rate at which packets were sent and received

• Number of bytes sent

• Number of bytes received

• Rate at which bytes were sent and received

SMC_SIZET session_network_activity_count = 12;
SMC_DATAITEM_STRUCT session_network_activity_view[] = {
{ SMC_NAME_NET_DEFAULT_PKT_SIZE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_NET_MAX_PKT_SIZE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_NET_PKT_SIZE_SENT, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_NET_PKT_SIZE_RCVD, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_NET_PKTS_SENT, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_NET_PKTS_RCVD, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_NET_PKTS_SENT, SMC_STAT_RATE_SESSION },
{ SMC_NAME_NET_PKTS_RCVD, SMC_STAT_RATE_SESSION },
{ SMC_NAME_NET_BYTES_SENT, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_NET_BYTES_RCVD, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_NET_BYTES_SENT, SMC_STAT_RATE_SESSION },
{ SMC_NAME_NET_BYTES_RCVD, SMC_STAT_RATE_SESSION }
};

Network activity for sample interval
This view shows the network activity over all Adaptive Server network
connections during the most recent sample interval. It shows the:

• Default packet size

• Maximum packet size

APPENDIX A Examples of Views

Programmer’s Guide 199

• Average packet sizes sent and received for the sample interval

• Number of packets sent

• Number of packets received

• Rate at which packets were sent and received

• Number of bytes sent

• Number of bytes received

• Rate at which bytes were sent and received

SMC_SIZET sample_network_activity_count = 12;
SMC_DATAITEM_STRUCT sample_network_activity_view[] = {
{ SMC_NAME_NET_DEFAULT_PKT_SIZE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_NET_MAX_PKT_SIZE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_NET_PKT_SIZE_SENT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_NET_PKT_SIZE_RCVD, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_NET_PKTS_SENT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_NET_PKTS_RCVD, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_NET_PKTS_SENT, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_NET_PKTS_RCVD, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_NET_BYTES_SENT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_NET_BYTES_RCVD, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_NET_BYTES_SENT, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_NET_BYTES_RCVD,, SMC_STAT_RATE_SAMPLE }
};

Network performance summary
This view shows the rate of Adaptive Server activity over all its network
connections during the most recent sample interval. It shows the number of
bytes per second that were received by and sent by Adaptive Server during the
interval.

SMC_SIZET network_perf_sum_count = 2;
SMC_DATAITEM_STRUCT network_perf_sum_view[] = {
{ SMC_NAME_NET_BYTES_RCVD, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_NET_BYTES_SENT, SMC_STAT_RATE_SAMPLE }
};

Procedure cache statistics for session

200 Monitor Client Library

Procedure cache statistics for session
This view shows the effectiveness of the procedure cache of Adaptive Server
since the start of the session. It shows the:

• Percentage of requests for stored procedure executions that were satisfied
by the procedure cache

• Number of logical reads and physical reads of stored procedures since the
start of the session

• Overall rate of logical and physical reads of stored procedures since the
start of the session

SMC_SIZET session_procedure_cache_stats_count = 5;
SMC_DATAITEM_STRUCT session_procedure_cache_stats_view[] = {
{ SMC_NAME_STP_HIT_PCT, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_STP_LOGICAL_READ, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_STP_LOGICAL_READ, SMC_STAT_RATE_SESSION },
{ SMC_NAME_STP_PHYSICAL_READ, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_STP_PHYSICAL_READ, SMC_STAT_RATE_SESSION }
};

Procedure cache statistics for sample interval
This view shows the effectiveness of the procedure cache of Adaptive Server
for the most recent sample interval. It shows the:

• Percentage of requests for stored procedure executions that were satisfied
by the procedure cache for the most recent sample interval

• Number of logical reads and physical reads of stored procedures during
the most recent sample interval

• Rate of logical and physical reads of stored procedures for the most recent
sample interval

SMC_SIZET sample_procedure_cache_stats_count = 5;
SMC_DATAITEM_STRUCT sample_procedure_cache_stats_view[] = {
{ SMC_NAME_STP_HIT_PCT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_STP_LOGICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_STP_LOGICAL_READ, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_STP_PHYSICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_STP_PHYSICAL_READ, SMC_STAT_RATE_SAMPLE }
};

APPENDIX A Examples of Views

Programmer’s Guide 201

Procedure page I/O
This view shows page I/Os that occurred while running stored procedures
during the most recent sample interval. For each stored procedure that
generated page I/Os during the sample interval, it shows the stored procedure
name and ID, together with the name and ID of the database that contains the
procedure. If page I/Os were produced when no stored procedure was active,
those I/Os are associated with procedure ID and database ID values of zero.

This view also shows, on a per stored procedure level:

• Total page I/Os

• Percentage of page I/O requests that could be satisfied by Adaptive Server
data caches

• Number of logical reads, physical reads, and page writes generated while
executing the stored procedures during the most recent sample interval.

SMC_SIZET procedure_page_cache_io_count = 9;
SMC_DATAITEM_STRUCT procedure_page_cache_io_view[] = {
{ SMC_NAME_ACT_STP_DB_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_ACT_STP_DB_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_ACT_STP_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_ACT_STP_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_IO, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_HIT_PCT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_VALUE_SAMPLE }
};

Process activity
This view shows the CPU use, page I/Os, and current process state for all
processes in Adaptive Server.

For each process in the most recent sample interval it shows the:

• Login name

• Process ID

• Kernel Process ID

• Current process state

Process database object page I/O

202 Monitor Client Library

The view also presents each process’s connect time, total page I/Os and CPU
usage time, accumulated since the start of the session.

SMC_SIZET process_activity_count = 7;
SMC_DATAITEM_STRUCT process_activity_view[] = {
{ SMC_NAME_LOGIN_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_SPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_KPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CONNECT_TIME, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_PAGE_IO, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_CPU_TIME, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_CUR_PROC_STATE, SMC_STAT_VALUE_SAMPLE }
};

Process database object page I/O
This view shows the page I/Os by database object for each Adaptive Server
process. For each process that had page I/Os during the most recent sample
interval it shows the:

• Login name

• Process ID

• Kernel Process ID

For each such process and for each database object it accessed, the view shows
the:

• Object name

• Object ID

• Database name and ID

• Page I/Os

The view also shows the total page I/Os, the percentage of page I/O requests
that could be satisfied by Adaptive Server cache, and the number of logical
reads, physical reads, and page writes for the most recent sample interval.

SMC_SIZET process_object_page_io_count = 13;
SMC_DATAITEM_STRUCT process_object_page_io_view[] = {
{ SMC_NAME_LOGIN_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_SPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_KPID, SMC_STAT_VALUE_SAMPLE },

APPENDIX A Examples of Views

Programmer’s Guide 203

{ SMC_NAME_DB_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DB_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_OBJ_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_OBJ_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_OBJ_TYPE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_IO, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_HIT_PCT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_VALUE_SAMPLE }
};

Process detail for locks
This view shows the status of locks held or being requested by Adaptive Server
processes as of the end of the most recent sample interval. Each lock is
identified by:

• Login name

• Process ID

• Kernel Process ID of the Adaptive Server process associated with the lock

• Name and ID of the object being locked

• Name and ID of the database that contains that object

• Page number to which the lock applies (if it is a page lock)

• Current status of each lock

• Indication of whether or not this is a demand lock

If the lock is being requested by the process, the amount of time that this
process has waited to acquire the lock and the Process ID of the process that
holds the lock are shown. If the process holds the lock, the count of other
processes waiting to acquire that lock is shown.

SMC_SIZET process_detail_locks_count = 13;
SMC_DATAITEM_STRUCT process_detail_locks_view[] = {
{ SMC_NAME_LOGIN_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_SPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_KPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DB_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DB_ID, SMC_STAT_VALUE_SAMPLE },

Process detail page I/O

204 Monitor Client Library

{ SMC_NAME_OBJ_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_OBJ_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_NUM, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_LOCK_STATUS, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DEMAND_LOCK, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_TIME_WAITED_ON_LOCK, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_BLOCKING_SPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_LOCKS_BEING_BLOCKED_CNT, SMC_STAT_VALUE_SAMPLE }
};

Process detail page I/O
This view shows the page I/Os for each Adaptive Server process in detail. It
shows the following as of the end of the most recent sample interval:

• Login name

• Process ID

• Kernel Process ID

• Process state and current engine are shown for each Adaptiver Server
process

The view shows the percentage of page I/O requests that could be satisfied by
Adaptive Server data caches, both for the sample interval and since the start of
the session. It also shows the number of logical reads, physical reads, and page
writes since the start of the session.

SMC_SIZET process_detail_io_count = 12;
SMC_DATAITEM_STRUCT process_detail_io_view[] = {
{ SMC_NAME_LOGIN_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_SPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_KPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_PROC_STATE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CUR_ENGINE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_CONNECT_TIME, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_CPU_TIME, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_PAGE_HIT_PCT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_HIT_PCT, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_VALUE_SESSION }
};

APPENDIX A Examples of Views

Programmer’s Guide 205

Process locks
This view shows the count of lock requests for every process in Adaptive
Server that generated lock requests during the most recent sample interval.

SMC_SIZET process_lock_count = 4;
SMC_DATAITEM_STRUCT process_lock_view[] = {
{ SMC_NAME_LOGIN_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_SPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_KPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_LOCK_CNT, SMC_STAT_VALUE_SAMPLE }
};

Process page I/O
This view summarizes the page I/Os for each Adaptive Server process for the
most recent sample. For each process in Adaptive Server that generated page
I/Os during the interval, it shows the login name, Process ID, and Kernel
Process ID.

This view also shows, for each process:

• Total page I/Os

• Percentage of page I/O requests that could be satisfied by Adaptive Server
data caches

• Number of logical reads, physical reads, and writes for the most recent
sample interval

SMC_SIZET process_page_io_count = 8;
SMC_DATAITEM_STRUCT process_page_io_view[] = {
{ SMC_NAME_LOGIN_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_SPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_KPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_IO, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_HIT_PCT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_VALUE_SAMPLE }
};

Process state summary

206 Monitor Client Library

Process state summary
This view shows the number of processes that were in each process state at the
end of the most recent sample interval.

SMC_SIZET process_perf_sum_count = 2;
SMC_DATAITEM_STRUCT process_perf_sum_view[] = {
{ SMC_NAME_PROC_STATE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PROC_STATE_CNT, SMC_STAT_VALUE_SAMPLE }
};

Process stored procedure page I/O
This view shows the page I/Os associated with stored procedure executions by
Adaptive Server processes. It shows the login name, Process ID, and Kernel
Process ID for each process that generated page I/Os during the sample
interval.

For each process and stored procedure that generated page I/Os, it shows the
name and ID of the database that contains the stored procedure, and the name
and ID of the procedure.

For the most recent sample interval, the view shows the:

• Total page I/Os

• Percentage of page I/O requests that could be satisfied from data caches

• Number of logical reads, physical reads, and page writes

SMC_SIZET process_procedure_page_io_count = 12;
SMC_DATAITEM_STRUCT process_procedure_page_io_view[] = {
{ SMC_NAME_LOGIN_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_SPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_KPID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_ACT_STP_DB_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_ACT_STP_DB_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_ACT_STP_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_ACT_STP_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_IO, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_HIT_PCT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_LOGICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_PHYSICAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_WRITE, SMC_STAT_VALUE_SAMPLE }
};

APPENDIX A Examples of Views

Programmer’s Guide 207

Server performance summary
This view shows overall Adaptive Server performance. It shows the:

• Number of lock requests per second

• Percentage of the sample interval when Adaptive Server was busy

• Number of transactions processed per second

• Number of times Adaptive Server detected a deadlock during the most
recent sample interval

SMC_SIZET server_perf_sum_count = 4;
SMC_DATAITEM_STRUCT server_perf_sum_view[] = {
{ SMC_NAME_LOCK_CNT, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_CPU_BUSY_PCT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_XACT, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_DEADLOCK_CNT, SMC_STAT_VALUE_SAMPLE }
};

Stored procedure activity
This view shows stored procedure activity for procedure statements. Each
statement of any stored procedure that was executed during the most recent
sample interval is identified by:

• Name and ID of the database that contains the procedure

• Name and ID of the procedure

• Relative number of the statement within the stored procedure

• Line of the procedure’s text on which the statement begins

The view shows the:

• Number of times each statement was executed, both during the most recent
sample interval and since the start of the session

• Average elapsed time needed to execute the statement, both for the sample
interval and for the session so far

SMC_SIZET procedure_activity_count = 10;
SMC_DATAITEM_STRUCT procedure_activity_view[] = {
{ SMC_NAME_ACT_STP_DB_ID,SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_ACT_STP_DB_NAME, SMC_STAT_VALUE_SAMPLE },

Transaction activity

208 Monitor Client Library

{ SMC_NAME_ACT_STP_ID, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_ACT_STP_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_STP_LINE_NUM, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_STP_STMT_NUM, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_STP_NUM_TIMES_EXECUTED, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_STP_NUM_TIMES_EXECUTED, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_STP_ELAPSED_TIME, SMC_STAT_AVG_SAMPLE },
{ SMC_NAME_STP_ELAPSED_TIME, SMC_STAT_AVG_SESSION }
};

Transaction activity
This view shows the transaction activity that occurred in the
 Adaptive Server, both for the sample interval and the session.

SMC_SIZET transaction_activity_count = 20;
SMC_DATAITEM_STRUCT transaction_activity_view[] = {
{ SMC_NAME_XACT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_XACT_DELETE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_XACT_INSERT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_XACT_UPDATE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_XACT_UPDATE_DIRECT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_XACT, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_XACT_DELETE, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_XACT_INSERT, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_XACT_UPDATE, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_XACT_UPDATE_DIRECT, SMC_STAT_VALUE_SESSION },
{ SMC_NAME_XACT, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_XACT_DELETE, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_XACT_INSERT, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_XACT_UPDATE, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_XACT_UPDATE_DIRECT, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_XACT, SMC_STAT_RATE_SESSION },
{ SMC_NAME_XACT_DELETE, SMC_STAT_RATE_SESSION },
{ SMC_NAME_XACT_INSERT, SMC_STAT_RATE_SESSION },
{ SMC_NAME_XACT_UPDATE,, SMC_STAT_RATE_SESSION },
{ SMC_NAME_XACT_UPDATE_DIRECT, SMC_STAT_RATE_SESSION }
};SMC_SIZET num_views = 27;
SMC_SIZET* view_count = (SMC_SIZET*) malloc (sizeof(SMC_SIZET)

* num_views);
SMC_DATAITEM_STRUCT** view_list = (SMC_DATAITEM_STRUCT**)

malloc (sizeof(SMC_DATAITEM_STRUCT*) * num_views);
SMC_SIZET** view_id_handle_list = (SMC_SIZET**) malloc

APPENDIX A Examples of Views

Programmer’s Guide 209

(sizeof(SMC_SIZET*) * num_views);
SMC_SIZET* view_id_list = (SMC_SIZET*) malloc
(sizeof(SMC_SIZET) * num_views);

SMC_SIZET client_id;
SMC_SIZETP client_id_handle = &client_id;

SMC_SERVER_MODE server_mode = SMC_SERVER_M_LIVE;
SMC_CHAR server_name[40];
SMC_CHAR user_name[40];
SMC_CHAR password[40];
SMC_CHAR interfaces_file[40];

SMC_RETURN_CODE ret;
SMC_SIZET refresh_num, view_num, col_num, row_num;

SMC_SIZET num_refreshes = 10;

SMC_SIZET row_count;
SMC_SIZETP row_count_handle = &row_count;

SMC_DATAITEM_STRUCTP dataitem_list;
SMC_DATAITEM_NAME dataitem_name;
SMC_CHARP dataitem_name_str;
SMC_DATAITEM_STATTYPE dataitem_stat;

SMC_CHARP dataitem_stat_str;
SMC_DATAITEM_TYPE dataitem_type;

SMC_VALUE_UNION data_union;
SMC_VALUE_UNIONP data_union_handle = &data_union;
SMC_CHARP data_str;
SMC_INT ival;

printf("**\n");
printf("** Test Driver for SQL Monitor Client Library **\n");
printf("**\n");
if (argc != 5)
{

printf(Usage: testcli <SQLMonitorServer> <user> <password>
<"interfaces_file>\n");
exit(1);

}

strcpy(server_name, argv[1]);
strcpy(user_name, argv[2]);
strcpy(password, argv[3]);
strcpy(interfaces_file, argv[4]);

Transaction activity

210 Monitor Client Library

for(view_num=0; view_num<num_views; view_num++)
{
view_id_handle_list[view_num] = &(view_id_list[view_num]);

}

view_count [0] = cache_perf_sum_count;
view_list [0] = cache_perf_sum_view;
view_count [1] = object_lock_status_count;
view_list [1] = object_lock_status_view;
view_count [2] = object_page_io_count;
view_list [2] = object_page_io_view;
view_count [3] = session_page_cache_stats_count;
view_list [3] = session_page_cache_stats_view;
view_count [4] = sample_page_cache_stats_count;
view_list [4] = sample_page_cache_stats_view;
view_count [5] = session_device_io_count;
view_list [5] = session_device_io_view;
view_count [6] = sample_device_io_count;
view_list [6] = sample_device_io_view;
view_count [7] = device_perf_sum_count;
view_list [7] = device_perf_sum_view;
view_count [8] = engine_activity_count;
view_list [8] = engine_activity_view;
view_count [9] = lock_perf_sum_count;
view_list [9] = lock_perf_sum_view;
view_count [10] = session_network_activity_count;
view_list [10] = session_network_activity_view;
view_count [11] = sample_network_activity_count;
view_list [11] = sample_network_activity_view;
view_count [12] = network_perf_sum_count;
view_list [12] = network_perf_sum_view;
view_count [13] = session_procedure_cache_stats_count;
view_list [13] = session_procedure_cache_stats_view;
view_count [14] = sample_procedure_cache_stats_count;
view_list [14] = sample_procedure_cache_stats_view;
view_count [15] = procedure_page_cache_io_count;
view_list [15] = procedure_page_cache_io_view;
view_count [16] = process_activity_count;
view_list [16] = process_activity_view;
view_count [17] = process_object_page_io_count;
view_list [17] = process_object_page_io_view;
view_count [18] = process_detail_locks_count;
view_list [18] = process_detail_locks_view;
view_count [19] = process_detail_io_count;
view_list [19] = process_detail_io_view;

APPENDIX A Examples of Views

Programmer’s Guide 211

view_count [20] = process_lock_count;
view_list [20] = process_lock_view;
view_count [21] = process_page_io_count;
view_list [21] = process_page_io_view;
view_count [22] = process_perf_sum_count;
view_list [22] = process_perf_sum_view;
view_count [23] = process_procedure_page_io_count;
view_list [23] = process_procedure_page_io_view;
view_count [24] = server_perf_sum_count;
view_list [24] = server_perf_sum_view;
view_count [25] = procedure_activity_count;
view_list [25] = procedure_activity_view;
view_count [26] = transaction_activity_count;
view_list [26] = transaction_activity_view;

printf("********** testing smc_connect() **********\n");
ret = smc_connect(server_mode,

server_name,
user_name,
password,
interfaces_file,
ErrorCallback,
0,
0,
client_id_handle);

if (ret != SMC_RET_SUCCESS)
{

printf("error returned by smc_connect()\n");
return (int) ret;

}
else
{

printf("smc_connect() succeeded\n");
}

printf("********** testing smc_create_view() **********\n");
for(view_num=0; view_num<num_views; view_num++)
{
ret = smc_create_view(client_id,

view_list[view_num],
view_count[view_num],

(SMC_CHARP) 0,
view_id_handle_list[view_num]);

if (ret != SMC_RET_SUCCESS)
{

printf("error returned by smc_create_view(%d)\n",
view_num);

Transaction activity

212 Monitor Client Library

return (int) ret;
}
else
{

printf("smc_create_view(%d) succeeded\n", view_num);
}

}
printf("********** testing smc_refresh() **********\n");
for(refresh_num=0; refresh_num<num_refreshes; refresh_num++)
{

ret = smc_refresh(client_id,
(SMC_VOIDP) 0,
RefreshCallback,
0);

if (ret != SMC_RET_SUCCESS)
{

printf("error returned by smc_refresh() number %d\n",
refresh_num);

return (int) ret;
}
else
{

printf("smc_refresh() number %d succeeded\n", refresh_num);
}

for(view_num=0; view_num<num_views; view_num++)
{

printf("****** testing smc_get_row_count() ******\n");
ret = smc_get_row_count(client_id,

view_id_list[view_num],
row_count_handle);

if (ret != SMC_RET_SUCCESS)
{

printf("error returned by smc_get_row_count()\n");
return (int) ret;

}
else
{

printf("smc_get_row_count(view_id = %d) = %d\n",
view_id_list[view_num], row_count);

}

dataitem_list = view_list[view_num];

/* print dataitem name headers */
for(col_num = 0; col_num<view_count[view_num]; col_num++)

APPENDIX A Examples of Views

Programmer’s Guide 213

{
dataitem_name = (dataitem_list[col_num]).dataItemName;
dataitem_name_str = LookupDataItemName(dataitem_name);
printf("Col %d %s\t", col_num, dataitem_name_str);

}
printf("\n");

/* print dataitem stattype headers */
for(col_num = 0; col_num<view_count[view_num]; col_num++)
{

dataitem_stat = (dataitem_list[col_num]).dataItemStatType;
dataitem_stat_str = LookupDataItemStat(dataitem_stat);
printf("Col %d %s\t", col_num, dataitem_stat_str);

}
printf("\n");

for(row_num = 0; row_num<row_count; row_num++)
{

for(col_num = 0; col_num<view_count[view_num];
col_num++)
{

dataitem_name = (dataitem_list[col_num]).dataItemName;
dataitem_stat = (dataitem_list[col_num]).dataItemStatType;
dataitem_name_str = LookupDataItemName(dataitem_name);
ret = smc_get_dataitem_value(client_id,

view_id_list[view_num],
&(dataitem_list[col_num]),
row_num,
data_union_handle);

if (ret != SMC_RET_SUCCESS)
{

printf("error returned by smc_get_dataitem_value()\n");
return (int) ret;

}

smc_get_dataitem_type(&(dataitem_list[col_num]),
&dataitem_type);

switch(dataitem_type)
{

case SMC_DI_TYPE_CHARP:
printf("Col %d:

\"%s\"\t",col_num,data_union.stringValue);
free(data_union.stringValue);
break;

case SMC_DI_TYPE_DOUBLE:

Transaction activity

214 Monitor Client Library

printf("Col %d:
%f\t",col_num,data_union.doubleValue);

break;
case SMC_DI_TYPE_ENUMS:

ival = data_union.intValue;
switch (dataitem_name)
{

case SMC_NAME_LOCK_RESULT_SUMMARY:
data_str = LookupLockResultSummary(

((SMC_LOCK_RESULT_SUMMARY) ival));
printf("Col %d: \"%s\"\t",col_num, data_str);
break;

case SMC_NAME_LOCK_RESULT:
data_str = LookupLockResult(

((SMC_LOCK_RESULT) ival));
printf("Col %d: \"%s\"\t",col_num, data_str);
break;

case SMC_NAME_LOCK_STATUS:
data_str = LookupLockStatus(

((SMC_LOCK_STATUS) ival));
printf("Col %d: \"%s\"\t",col_num, data_str);
break;

case SMC_NAME_LOCK_TYPE:
data_str = LookupLockType(((SMC_LOCK_TYPE)

ival));
printf("Col %d: \"%s\"\t",col_num, data_str);
break;

case SMC_NAME_OBJ_TYPE:
data_str = LookupObjectType(((SMC_OBJ_TYPE)

ival));
printf("Col %d: \"%s\"\t",col_num, data_str);
break;

case SMC_NAME_CUR_PROC_STATE:
case SMC_NAME_PROC_STATE:

data_str = LookupProcessState(
((SMC_PROCESS_STATE) ival));

printf("Col %d: \"%s\"\t",col_num, data_str);
break;

default:
printf("Col %d: \"ERR with %s\"\t",col_num,

dataitem_name_str);
}
break;

case SMC_DI_TYPE_LONG:
printf("Col %d: %d\t",col_num,

data_union.longValue);

APPENDIX A Examples of Views

Programmer’s Guide 215

break;
case SMC_DI_TYPE_DATIM:
case SMC_DI_TYPE_NONE:
default:
printf("Col %d: \"ERR with %s\"\t",col_num,

dataitem_name_str);
}

}
printf("\n");

}
}

}

printf("********** testing smc_disconnect() **********\n");
ret = smc_disconnect(client_id);
if (ret != SMC_RET_SUCCESS)
{

printf("error returned by smc_disconnect
return (int) ret;

}
{

printf("smc_disconnect() succeeded\n");
}

free(view_count);
free(view_list);

return 0;
}

SMC_VOID
ErrorCallback(

SMC_SIZET id,
SMC_SIZET error_number,
SMC_SIZET severity,
SMC_SIZET map_severity,
SMC_SIZET source,
SMC_CCHARP error_msg,
SMC_SIZET state
)

{
printf("**\n");
printf("Inside ErrorCallback()\n");

Transaction activity

216 Monitor Client Library

printf("id = %d\n", id);
printf("error_number = %d\n", error_number);
printf("err severity = %d\n", severity);
printf("map severity = %d\n", map_severity);
printf("source = %d\n", source);
printf("error msg = %s\n", error_msg);
printf("state = %d\n", state);
printf("**\n");
return;

}

SMC_VOID
RefreshCallback(

SMC_SIZET id,
SMC_VOIDP user_msg,
SMC_CHARP msg
)

{
printf("**\n");
printf("Inside RefreshCallback()\n");

printf("id = %d\n", id);
printf("user_msg = %s\n", (SMC_CHARP) user_msg);
printf("msg = %s\n", msg);

return;
}

SMC_CHARP
LookupDataItemName(

SMC_DATAITEM_NAME value
)

{
typedef struct {
SMC_CHARP str_name;
SMC_DATAITEM_NAME enum_name;

} DATAITEM_NAME_MAPPER;
DATAITEM_NAME_MAPPER dataitem_name_map[] = {
{ "Process ID", SMC_NAME_SPID },
{ "Kernel Process ID", SMC_NAME_KPID },
{ "Cache Name", SMC_NAME_DATA_CACHE_NAME },
{ "Database ID", SMC_NAME_DB_ID },
{ "Object ID", SMC_NAME_OBJ_ID },
{ "Procedure Database ID", SMC_NAME_ACT_STP_DB_ID },
{ "Procedure ID", SMC_NAME_ACT_STP_ID },
{ "Procedure Line Number", SMC_NAME_STP_LINE_NUM },

APPENDIX A Examples of Views

Programmer’s Guide 217

{ "Lock Type", SMC_NAME_LOCK_TYPE },
{ "Lock Result", SMC_NAME_LOCK_RESULT },
{ "Lock Results Summarized", SMC_NAME_LOCK_RESULT_SUMMARY },
{ "Lock Status", SMC_NAME_LOCK_STATUS },
{ "Engine Number", SMC_NAME_ENGINE_NUM },
{ "Page Number", SMC_NAME_PAGE_NUM },
{ "Device Name", SMC_NAME_DEV_NAME },
{ "Process State", SMC_NAME_PROC_STATE },
{ "Login Name", SMC_NAME_LOGIN_NAME },
{ "Database Name", SMC_NAME_DB_NAME },
{ "Owner Name", SMC_NAME_OWNER_NAME },
{ "Object Name", SMC_NAME_OBJ_NAME },
{ "Object Type", SMC_NAME_OBJ_TYPE },
{ "Procedure Database Name", SMC_NAME_ACT_STP_DB_NAME },
{ "Procedure Owner Name", SMC_NAME_ACT_STP_OWNER_NAME },
{ "Procedure Name", SMC_NAME_ACT_STP_NAME },
{ "Blocking Process ID", SMC_NAME_BLOCKING_SPID },
{ "Cache Efficiency", SMC_NAME_DATA_CACHE_EFFICIENCY },
{ "Cache Hit Pct", SMC_NAME_DATA_CACHE_HIT_PCT },
{ "Cache Hits", SMC_NAME_DATA_CACHE_HIT },
{ "Cache Misses", SMC_NAME_DATA_CACHE_MISS },
{ "Cache Spinlock Contention", SMC_NAME_DATA_CACHE_CONTENTION },
{ "Connect Time", SMC_NAME_CONNECT_TIME },
{ "CPU Busy Percent", SMC_NAME_CPU_BUSY_PCT },
{ "CPU Percent", SMC_NAME_CPU_PCT },
{ "CPU Time", SMC_NAME_CPU_TIME },
{ "Current Engine", SMC_NAME_CUR_ENGINE },
{ "Current Process State", SMC_NAME_CUR_PROC_STATE },
{ "Deadlock Count", SMC_NAME_DEADLOCK_CNT },
{ "Demand Lock", SMC_NAME_DEMAND_LOCK },
{ "Device Hits", SMC_NAME_DEV_HIT },
{ "Device Hit Percent", SMC_NAME_DEV_HIT_PCT },
{ "Device I/O", SMC_NAME_DEV_IO },
{ "Device Misses", SMC_NAME_DEV_MISS },
{ "Device Reads", SMC_NAME_DEV_READ },
{ "Device Writes", SMC_NAME_DEV_WRITE },
{ "Lock Count", SMC_NAME_LOCK_CNT },
{ "Lock Hit Percent", SMC_NAME_LOCK_HIT_PCT },
{ "Lock Status Count", SMC_NAME_LOCK_STATUS_CNT },
{ "Locks Being Blocked Count", SMC_NAME_LOCKS_BEING_BLOCKED_CNT },
{ "Code Memory Size", SMC_NAME_MEM_CODE_SIZE },
{ "Kernel Structures Memory Size", SMC_NAME_MEM_KERNEL_STRUCT_SIZE },
{ "Page Cache Size", SMC_NAME_MEM_PAGE_CACHE_SIZE },
{ "Procedure Buffer Size", SMC_NAME_MEM_PROC_BUFFER },
{ "Procedure Header Size", SMC_NAME_MEM_PROC_HEADER },
{ "Server Structures Size", SMC_NAME_MEM_SERVER_STRUCT_SIZE },

Transaction activity

218 Monitor Client Library

{ "Most Active Device I/O", SMC_NAME_MOST_ACT_DEV_IO },
{ "Most Active Device Name", SMC_NAME_MOST_ACT_DEV_NAME },
{ "Net I/O Bytes", SMC_NAME_NET_BYTE_IO },
{ "Net Bytes Received", SMC_NAME_NET_BYTES_RCVD },
{ "Net Bytes Sent", SMC_NAME_NET_BYTES_SENT },
{ "Net Default Packet Size", SMC_NAME_NET_DEFAULT_PKT_SIZE },
{ "Net Max Packet Size", SMC_NAME_NET_MAX_PKT_SIZE },
{ "Net Packet Size Received", SMC_NAME_NET_PKT_SIZE_RCVD },
{ "Net Packet Size Sent", SMC_ NAME_NET_PKT_SIZE_SENT },
{ "Net Packets Received", SMC_NAME_NET_PKTS_RCVD },
{ "Net Packets Sent", SMC_NAME_NET_PKTS_SENT },
{ "Page Hit Percent", SMC_NAME_PAGE_HIT_PCT },
{ "Logical Page Reads", SMC_NAME_PAGE_LOGICAL_READ },
{ "Page I/O", SMC_NAME_PAGE_IO },
{ "Physical Page Reads", SMC_NAME_PAGE_PHYSICAL_READ },
{ "Page Writes", SMC_NAME_PAGE_WRITE },
{ "Process State Count", SMC_NAME_PROC_STATE_CNT },
{ "Timestamp", SMC_NAME_TIMESTAMP },
{ "Elapsed Time", SMC_NAME_ELAPSED_TIME },
{ "SQL Server Name", SMC_NAME_SQL_SERVER_NAME },
{ "SQL Server Version", SMC_NAME_SQL_SERVER_VERSION },
{ "Procedure Elapsed Time", SMC_NAME_STP_ELAPSED_TIME },
{ "Procedure Hit Percent", SMC_NAME_STP_HIT_PCT },
{ "Procedure Line Text", SMC_NAME_STP_LINE_TEXT },
{ "Procedure Execution Count", SMC_NAME_STP_NUM_TIMES_EXECUTED },
{ "Procedure Logical Reads", SMC_NAME_STP_LOGICAL_READ },
{ "Procedure Physical Reads", SMC_NAME_STP_PHYSICAL_READ },
{ "Time Waited on Lock", SMC_NAME_TIME_WAITED_ON_LOCK },
{ "Transactions", SMC_NAME_XACT },
{ "Rows Deleted", SMC_NAME_XACT_DELETE },
{ "Rows Inserted Clustered", SMC_NAME_XACT_CINSERT },
{ "Rows Inserted", SMC_NAME_XACT_INSERT },
{ "Rows Inserted Nonclustered", SMC_NAME_XACT_NCINSERT },
{ "Rows Updated", SMC_NAME_XACT_UPDATE },
{ "Rows Updated Directly", SMC_NAME_XACT_UPDATE_DIRECT },
{ (SMC_CHARP)0, SMC_NAME_NONE }
};
SMC_INT idx = 0;
SMC_BOOL match = FALSE;
while(match == FALSE)
{
if (value == dataitem_name_map[idx].enum_name)

return dataitem_name_map[idx].str_name;

if (dataitem_name_map[idx].enum_name == SMC_NAME_NONE)
return dataitem_name_map[idx].str_name;

APPENDIX A Examples of Views

Programmer’s Guide 219

idx++;
}

}

SMC_CHARP
LookupDataItemStat(

SMC_DATAITEM_STATTYPE value
)

{
typedef struct {

SMC_CHARP str_stat;
SMC_DATAITEM_STATTYPE enum_stat;

} DATAITEM_STAT_MAPPER;

DATAITEM_STAT_MAPPER dataitem_stat_map[] = {
{ "Value for Sample", SMC_STAT_VALUE_SAMPLE },
{ "Value for Session", SMC_STAT_VALUE_SESSION },
{ "Rate for Sample", SMC_STAT_RATE_SAMPLE },
{ "Rate for Session", SMC_STAT_RATE_SESSION },
{ "Avg for Sample", SMC_STAT_AVG_SAMPLE },
{ "Avg for Session", SMC_STAT_AVG_SESSION },
{ (SMC_CHARP)0, 0 }
};

SMC_INT idx = 0;
SMC_BOOL match = FALSE;

while(match == FALSE)
{

if (value == dataitem_stat_map[idx].enum_stat)
return dataitem_stat_map[idx].str_stat;

if (dataitem_stat_map[idx].enum_stat == 0)
return dataitem_stat_map[idx].str_stat;

idx++;
}

}

SMC_CHARP
LookupLockResult(

SMC_LOCK_RESULT value
)

Transaction activity

220 Monitor Client Library

{
typedef struct {
SMC_CHARP str_lock_res;
SMC_LOCK_RESULT enum_lock_res;

} LOCK_RESULT_MAPPER;

LOCK_RESULT_MAPPER lock_result_map[] = {
{ "granted", SMC_LOCK_R_GRANTED },
{ "notneeded", SMC_LOCK_R_NOTNEEDED },
{ "waited", SMC_LOCK_R_WAITED },
{ "didntwait", SMC_LOCK_R_DIDNTWAIT },
{ "deadlock", SMC_LOCK_R_DEADLOCK },
{ "interrupted", SMC_LOCK_R_INTERRUPTED},
{ (SMC_CHARP)0, 0 }
};

SMC_INT idx = 0;
SMC_BOOL match = FALSE;

while(match == FALSE)
{
if (value == lock_result_map[idx].enum_lock_res)

return lock_result_map[idx].str_lock_res;

if (lock_result_map[idx].enum_lock_res == 0)
return lock_result_map[idx].str_lock_res;

idx++;
}

}
SMC_CHARP
LookupLockResultSummary(

SMC_LOCK_RESULT_SUMMARY value
)

{
typedef struct {
SMC_CHARP str_lock_ressum;
SMC_LOCK_RESULT_SUMMARY enum_lock_ressum;

} LOCK_RESULT_SUMMARY_MAPPER;

LOCK_RESULT_SUMMARY_MAPPER lock_result_summary_map[] = {
{ "granted", SMC_LOCK_RS_GRANTED },
{ "notgranted", SMC_LOCK_RS_NOTGRANTED },
{ (SMC_CHARP)0, 0 }
};

APPENDIX A Examples of Views

Programmer’s Guide 221

SMC_INT idx = 0;
SMC_BOOL match = FALSE;

while(match == FALSE)
{

if (value == lock_result_summary_map[idx].enum_lock_ressum)
return lock_result_summary_map[idx].str_lock_ressum;

if (lock_result_summary_map[idx].enum_lock_ressum == 0)
return lock_result_summary_map[idx].str_lock_ressum;

idx++;
}

}

SMC_CHARP
LookupLockStatus(

SMC_LOCK_STATUS value
)

{
typedef struct {

SMC_CHARP str_lock_status;
SMC_LOCK_STATUS enum_lock_status;

} LOCK_STATUS_MAPPER;

LOCK_STATUS_MAPPER lock_status_map[] = {
{ "held_blocking", SMC_LOCK_S_HELD_BLOCKING },
{ "held_notblocking", SMC_LOCK_S_HELD_NOTBLOCKING },
{ "requested_blocked", SMC_LOCK_S_REQUESTED_BLOCKED },
{ "requested_notblocked", SMC_LOCK_S_REQUESTED_NOTBLOCKED },
{ (SMC_CHARP)0, 0 }
};

SMC_INT idx = 0;
SMC_BOOL match = FALSE;

while(match == FALSE)
{

if (value == lock_status_map[idx].enum_lock_status)
return lock_status_map[idx].str_lock_status;

if (lock_status_map[idx].enum_lock_status == 0)
return lock_status_map[idx].str_lock_status;

idx++;
}

Transaction activity

222 Monitor Client Library

}

SMC_CHARP
LookupLockType(

SMC_LOCK_TYPE value
)

{
typedef struct {
SMC_CHARP str_lock_type;
SMC_LOCK_TYPE enum_lock_type;

} LOCK_TYPE_MAPPER;

LOCK_TYPE_MAPPER lock_type_map[] = {
{ "ex_tab", SMC_LOCK_T_EX_TAB },
{ "sh_tab", SMC_LOCK_T_SH_TAB },
{ "ex_int", SMC_LOCK_T_EX_INT },
{ "sh_int", SMC_LOCK_T_SH_INT },
{ "ex_page", SMC_LOCK_T_EX_PAGE },
{ "sh_page", SMC_LOCK_T_SH_PAGE },
{ "upd_page", SMC_LOCK_T_UP_PAGE },
{ (SMC_CHARP)0, 0 }
};

SMC_INT idx = 0;
SMC_BOOL match = FALSE;

while(match == FALSE)
{
if (value == lock_type_map[idx].enum_lock_type)

return lock_type_map[idx].str_lock_type;

if (lock_type_map[idx].enum_lock_type == 0)
return lock_type_map[idx].str_lock_type;

idx++;
}

Programmer’s Guide 223

A P P E N D I X B Datatypes and Structures

Summary of datatypes
Table B-1 lists Monitor Client Library type constants with descriptions
and their corresponding C or Open Client datatypes.

Table B-1: Summary of datatypes

Topic Page
Summary of datatypes 223

Monitor Client Library datatype Description

Corresponding
C or Open
Client datatype

SMC_ALARM_ACTION_TYPE Specifies the type of action to take when an alarm
is triggered

None

SMC_ALARM_ID Alarm identifier size_t

SMC_ALARM_IDP Pointer to alarm identifier size_t*

SMC_BOOL Boolean int

SMC_CHAR Character char

SMC_CHARP Character pointer char*

SMC_CHARPP Pointer to character pointer char**

SMC_CCHARP Constant character pointer CS_CONST char*

SMC_CLOSE_TYPE Specifies an option when closing an Adaptive
Server Enterprise Monitor connection

None

SMC_COMMAND_ID Command identifier size_t

SMC_COMMAND_IDP Pointer to command identifier size_t*

SMC_CONNECT_ID Connection identifier size_t

SMC_CONNECT_IDP Pointer to connection identifier size_t*

SMC_DATETIME Date and time CS_DATETIME

SMC_DATAITEM_NAME Identifies a particular piece of performance data
that Monitor Client Library is to obtain

None

SMC_DATAITEM_NAMEP Pointer to SMC_DATAITEM_NAME None

Summary of datatypes

224 Monitor Client Library

SMC_DATAITEM_STATTYPE Identifies what normalization, if any, Monitor
Client Library should perform on data

None

SMC_DATAITEM_STRUCT Identifies data that Monitor Client Library is to
obtain

None

SMC_DATAITEM_STRUCTP Pointer to SMC_DATAITEM_STRUCT None

SMC_DATAITEM_TYPE Identifies datatype of data that Monitor Client
Library obtains

None

SMC_DATAITEM_TYPEP Pointer to SMC_DATAITEM_TYPE None

SMC_DOUBLE Double precision floating point double

SMC_DOUBLEP Pointer to double precision double*

SMC_ERR_SEVERITY Indicates the degree of severity of an error None

SMC_FILTER_ID Filter identifier size_t

SMC_FILTER_IDP Pointer to filter identifier size_t*

SMC_FILTER_TYPE Specifies the type of filter to create with
smc_create_filter

None

SMC_HS_ESTIM_OPT Specifies whether, in playback of historical
performance data, to authorize estimation of data
that cannot be calculated reliably from the
available recorded data

None

SMC_HS_MISSDATA_OPT Specifies whether, in playback of historical
performance data, a sample should be returned for
a period of time for which no data is available

None

SMC_HS_PLAYBACK_OPT Specifies whether playback of historical
performance data should be normalized or
summarized or both

None

SMC_HS_SESS_DELETE_OPT Specifies whether to delete data files associated
with a Historical Server session

None

SMC_HS_SESS_ERR_OPT Specifies whether a recording session should
continue after an error

None

SMC_HS_SESS_PROT_LEVEL Specifies whether the data in a recording session
should be accessible to other users

None

SMC_HS_SESS_SCRIPT_OPT Specifies whether to create a script to create tables
corresponding to the views in a recording session

None

SMC_HS_TARGET_OPT Specifies whether playback of historical
performance data should be sent to the client
application, or used to create a new session

None

SMC_INFO_TYPE Specifies the type of information to request in a call
to smc_get_command_info

None

Monitor Client Library datatype Description

Corresponding
C or Open
Client datatype

APPENDIX B Datatypes and Structures

Programmer’s Guide 225

SMC_INT Integer int

SMC_INTP Pointer to integer int*

SMC_LOCK_RESULT Identifies the possible outcomes of a lock request None

SMC_LOCK_RESULT_SUMMARY Identifies the two major categories of outcomes of
a lock request

None

SMC_LOCK_STATUS Identifies the possible statuses of a lock or lock
request

None

SMC_LOCK_TYPE Identifies the granularity and exclusivity of a lock None

SMC_LONG Long long

SMC_LONGP Pointer to long long*

SMC_OBJ_TYPE Identifies the type of an object in an Adaptive
Server database

None

SMC_PROC_STATE Identifies the possible statuses of an Adaptive
Server process

None

SMC_PROP_ACTION Specifies the action to take in a call to
smc_connect_props

None

SMC_PROP_TYPE Specifies the property that is the object of a call to
smc_connect_props

None

SMC_RETURN_CODE Indicates whether a Monitor Client Library
operation succeeded, and, if not, what error
occurred

None

SMC_SERVER_MODE Specifies whether an Adaptive Server Enterprise
Monitor connection is to obtain live performance
data or whether to manipulate historical data

None

SMC_SESSION_ID Session identifier size_t

SMC_SESSION_IDP Pointer to session identifier size_t*

SMC_SIZET unsigned integer size_t

SMC_SIZETP Pointer to unsigned integer size_t*

SMC_SOURCE Indicates the software layer that detected an error None

SMC_VALUE_UNION Structure containing data None

SMC_VALUE_UNIONP Pointer to SMC_VALUE_UNION None

SMC_VIEW_ID View identifier size_t

SMC_VIEW_IDP Pointer to view identifier size_t*

SMC_VOID Void void

SMC_VOIDP Pointer to void void*

Monitor Client Library datatype Description

Corresponding
C or Open
Client datatype

Enum: SMC_ALARM_ACTION_TYPE

226 Monitor Client Library

The rest of this appendix describes individual datatypes that have no equivalent
in C or Open-Client Client Library.

Enum: SMC_ALARM_ACTION_TYPE
An enum to identify the type of action taken when an alarm is triggered:

Table B-2: Alarm action type

Enum: SMC_CLOSE_TYPE
An enum used to identify the extent of a close command:

Table B-3: Close type

Enum: SMC_DATAITEM_NAME
An enum used in conjunction with smc_create_view to specify performance
data. See Chapter 2, “Data Items and Statistical Types” for a list of the
available data items.

Enum: SMC_DATAITEM_STATTYPE
An enum used in conjunction with smc_create_view to identify statistical type
and accumulation interval of performance data.

Table B-4: Data item statistical type

SMC_ALARM_A_EXEC_PROC

SMC_ALARM_A_LOG_TO_FILE

SMC_ALARM_A_NOTIFY

SMC_CLOSE_REQUEST

SMC_STAT_VALUE_SAMPLE

APPENDIX B Datatypes and Structures

Programmer’s Guide 227

Structure: SMC_DATAITEM_STRUCT
A structure used in conjunction with smc_create_view to identify performance
data.

Enum: SMC_DATAITEM_TYPE
An enum used in conjunction with smc_get_dataitem_type to identify physical
type of performance data results:

Table B-5: Data item type

SMC_STAT_VALUE_SESSION

SMC_STAT_RATE_SAMPLE

SMC_STAT_RATE_SESSION

SMC_STAT_AVG_SAMPLE

SMC_STAT_AVG_SESSION

typedef struct SMC_DATAITEM_STRUCT{

SMC_DATAITEM_NAME dataItemName

SMC_DATAITEM_STATTYPE dataItemStatType

} SMC_DATAITEM_STRUCT;

SMC_DI_TYPE_NONE

SMC_DI_TYPE_CHARP

SMC_DI_TYPE_DATIM

SMC_DI_TYPE_DOUBLE

SMC_DI_TYPE_ENUMS

SMC_DI_TYPE_INT

SMC_DI_TYPE_LONG

Enum: SMC_ERR_SEVERITY

228 Monitor Client Library

Enum: SMC_ERR_SEVERITY
An enum used in conjunction with smc_get_command_info to identify the
severity of an error, warning, or informational notification.

Table B-6: Error severity

Enum: SMC_FILTER_TYPE
An enum to identify the types of filters:

Table B-7: Filter type

Enum: SMC_HS_ESTIM_OPT
An enum to specify whether to allow certain data to be estimated during a
playback session.

Table B-8: Historical Server error action

SMC_ERR_SEV_INFO

SMC_ERR_SEV_WARN

SMC_ERR_SEV_FATAL

SMC_FILT_T_EQ

SMC_FILT_T_NEQ

SMC_FILT_T_GE

SMC_FILT_T_LE

SMC_FILT_T_GE_AND_LE

SMC_FILT_T_TOP_N

SMC_HS_ESTIM_ALLOW

SMC_HS_ESTIM_DISALLOW

APPENDIX B Datatypes and Structures

Programmer’s Guide 229

Enum: SMC_HS_MISSDATA_OPT
An enum to specify what action Historical Server should take if a given sample
during a playback session has no performance data to play back:

Table B-9: Historical Server missing data option

Enum: SMC_HS_PLAYBACK_OPT
An enum to specify whether data for a playback session should be normalized,
summarized, or both.

Table B-10: Historical Server protection level

Enum: SMC_HS_SESS_DELETE_OPT
An enum to specify whether to delete data files associated with a Historical
Server connection.

Table B-11: Historical Server file deletion option

Enum: SMC_HS_SESS_ERR_OPT
An enum to specify what action Historical Server should take if a recording
session encounters non-fatal errors:

SMC_HS_MISSDATA_SHOW

SMC_HS_MISSDATA_SKIP

SMC_HS_PBTYPE_ENTIRE

SMC_HS_PBTYPE_ACTUAL

SMC_HS_PBTYPE_INTERVAL

SMC_HS_PBTYPE_RAW

SMC_HS_SESS_DELETE_FILES

SMC_HS_SESS_RETAIN_FILES

Enum: SMC_HS_SESS_PROT_LEVEL

230 Monitor Client Library

Table B-12: Historical Server error option

Enum: SMC_HS_SESS_PROT_LEVEL
An enum to specify the protection level for access to performance data
recorded by Historical Server:

Table B-13: Historical Server protection level

Enum: SMC_HS_SESS_SCRIPT_OPT
An enum to specify the type of script (if any) that Historical Server should
create to help the user to manipulate the performance data of a recording
session:

Table B-14: Historical Server script option

Enum: SMC_HS_TARGET_OPT
An enum to specify whether the playback session will return data to the
application or whether playback will create a new session on Historical Server:

Table B-15: Historical Server script option

SMC_HS_SESS_ERR_CONT

SMC_HS_SESS_ERR_HALT

SMC_HS_SESS_PROT_PRIVATE

SMC_HS_SESS_PROT_PUBLIC

SMC_HS_SESS_SCRIPT_SYBASE

SMC_HS_SESS_SCRIPT_NONE

SMC_HS_TARGET_CLIENT

SMC_HS_TARGET_FILE

APPENDIX B Datatypes and Structures

Programmer’s Guide 231

Enum: SMC_HS_TARGET_OPT
An enum to specify the destination of data in a playback session:

Table B-16: Historical Server playback target option

Enum: SMC_INFO_TYPE
An enum to identify the various pieces of data that are available for querying
from a callback function, using smc_get_command_info:

Table B-17: Information type

Enum: SMC_LOCK_RESULT
An enum to identify results of a lock request:

Table B-18: Lock result type

SMC_HS_TARGET_CLIENT

SMC_HS_TARGET_FILE

SMC_INFO_ALARM_ACTION_DATA

SMC_INFO_ALARM_ALARMID

SMC_INFO_ALARM_CURRENT_VALUE

SMC_INFO_ALARM_DATAITEM

SMC_INFO_ALARM_ROW

SMC_INFO_ALARM_THRESHOLD_VALUE

SMC_INFO_ALARM_TIMESTAMP

SMC_INFO_ALARM_VALUE_DATATYPE

SMC_INFO_ALARM_VIEWID

SMC_INFO_ERR_MAPSEVERITY

SMC_INFO_ERR_MSG

SMC_INFO_ERR_NUM

SMC_INFO_ERR_SEVERITY

SMC_INFO_ERR_SOURCE

SMC_INFO_ERR_STATE

SMC_LOCK_R_GRANTED

Enum: SMC_LOCK_RESULT_SUMMARY

232 Monitor Client Library

Enum: SMC_LOCK_RESULT_SUMMARY
An enum to identify whether the lock request was granted or not granted:

Table B-19: Lock result summary type

Enum: SMC_LOCK_STATUS
An enum to identify the status of a lock:

Table B-20: Lock status type

Enum: SMC_LOCK_TYPE
An enum to identify lock types:

Table B-21: Lock type

SMC_LOCK_R_NOTNEEDED

SMC_LOCK_R_WAITED

SMC_LOCK_R_DIDNTWAIT

SMC_LOCK_R_DEADLOCK

SMC_LOCK_R_INTERRUPTED

SMC_LOCK_RS_GRANTED

SMC_LOCK_RS_NOTGRANTED

SMC_LOCK_S_HELD_BLOCKING

SMC_LOCK_S_HELD_NOTBLOCKING

SMC_LOCK_S_REQUESTED_BLOCKED

SMC_LOCK_S_REQUESTED_NOTBLOCKED

SMC_LOCK_T_EX_TAB

SMC_LOCK_T_SH_TAB

SMC_LOCK_T_EX_INT

SMC_LOCK_T_SH_INT

APPENDIX B Datatypes and Structures

Programmer’s Guide 233

Enum: SMC_OBJ_TYPE
An enum to identify object types:

Table B-22: Object type

Enum: SMC_PROC_STATE
An enum to identify process states:

Table B-23: Process state

SMC_LOCK_T_EX_PAGE

SMC_LOCK_T_SH_PAGE

SMC_LOCK_T_UP_PAGE

SMC_OBJ_T_STP

SMC_OBJ_T_TBL

SMC_PROC_STATE_ALARM_SLEEP

SMC_PROC_STATE_BACKGROUND

SMC_PROC_STATE_BAD_STATUS

SMC_PROC_STATE_INFECTED

SMC_PROC_STATE_LOCK_SLEEP

SMC_PROC_STATE_RECV_SLEEP

SMC_PROC_STATE_RUNNABLE

SMC_PROC_STATE_RUNNING

SMC_PROC_STATE_SEND_SLEEP

SMC_PROC_STATE_SLEEPING

SMC_PROC_STATE_STOPPED

SMC_PROC_STATE_TERMINATING

SMC_PROC_STATE_YIELDING

SMC_PROC_STATE_REMOTE_IO

SMC_PROC_STATE_SYNC_SLEEP

Enum: SMC_PROP_ACTION

234 Monitor Client Library

Enum: SMC_PROP_ACTION
An enum used to identify the desired action of an smc_connect_props function
call:

Table B-24: Connection property action

Enum: SMC_PROP_TYPE
An enum used to identify the property to operate on in a call to
smc_connect_props:

Table B-25: Connection property

Enum: SMC_RETURN_CODE
An enum to identify the types of return codes:

Table B-26: Return codes

SMC_PROP_ACT_SET

SMC_PROP_ACT_GET

SMC_PROP_ACT_CLEAR

SMC_PROP_APPNAME

SMC_PROP_ERROR_CALLBACK

SMC_PROP_IFILE

SMC_PROP_LOGIN_TIMEOUT

SMC_PROP_PACKETSIZE

SMC_PROP_PASSWORD

SMC_PROP_SERVERMODE

SMC_PROP_SERVERNAME

SMC_PROP_TIMEOUT

SMC_PROP_USERDATA

SMC_PROP_USERNAME

SMC_RET_SUCCESS

SMC_RET_FAILURE

SMC_RET_INSUFFICIENT_MEMORY

APPENDIX B Datatypes and Structures

Programmer’s Guide 235

SMC_RET_CONNECTION_ERROR

SMC_RET_UNABLE_TO_CONNECT_TO_SMS

SMC_RET_UNABLE_TO_CONNECT_TO_SS

SMC_RET_MISSING_RESULT_TABLE

SMC_RET_INVALID_USER_PASSWD

SMC_RET_INVALID_PARAMETER

SMC_RET_INVALID_CACHE

SMC_RET_INVALID_DCID

SMC_RET_INVALID_COMMAND

SMC_RET_INVALID_VIEWID

SMC_RET_INVALID_DINAME

SMC_RET_INVALID_DISTAT

SMC_RET_INVALID_DI_STRUCT

SMC_RET_DI_STAT_MISMATCH

SMC_RET_INVALID_DI_COMBO

SMC_RET_INVALID_DATATYPE

SMC_RET_INVALID_VALUE_COUNT

SMC_RET_INVALID_FILTER_VALUE

SMC_RET_INVALID_FILTER_RANGE

SMC_RET_DATAITEM_CONTAINS_FILTER

SMC_RET_INVALID_COMPOSITE_FILTER

SMC_RET_INVALID_SVR_MODE

SMC_RET_MISSING_DATAITEM

SMC_RET_INVALID_FILTERID

SMC_RET_INVALID_ALARMID

SMC_RET_INVALID_ALARM_VALUE

SMC_RET_INVALID_DINAME_FOR_ALARM

SMC_RET_INVALID_API_FUNC_SEQUENCE

SMC_RET_INVALID_API_FUNCTION

SMC_RET_INVALID_PROPERTY

SMC_RET_INVALID_INFOTYPE

SMC_RET_CONNECT_NOT_CLOSED

SMC_RET_ARITHMETIC_OVERFLOW

SMC_RET_LOGIN_LACKS_SA_ROLE

SMC_RET_INTERNAL_ERROR

Enum: SMC_SERVER_MODE

236 Monitor Client Library

Enum: SMC_SERVER_MODE
An enum to identify the types of Adaptive Server Enterprise Monitor
connections:

Table B-27: Server mode type

Enum: SMC_SOURCE
An enum used in conjunction with ErrorCallback to identify the source of an
error, warning or informational notification.

Table B-28: Error source

Union: SMC_VALUE_UNION
A union used in conjunction with smc_connect_props, smc_get_command_info,
and smc_get_dataitem_value to set and retrieve results.

SMC_SERVER_M_LIVE

SMC_SERVER_M_HISTORICAL

SMC_SRC_UNKNOWN

SMC_SRC_HS

SMC_SRC_SMC

SMC_SRC_CT

SMC_SRC_SS

SMC_SRC_SMS

typedef union SMC_VALUE_UNION {

SMC_INT intValue

SMC_LONG longValue

SMC_DOUBLE doubleValue

SMC_SIZET sizetValue

SMC_CHARP stringValue

SMC_VOIDP voidpValue

SMC_DATETIME datetimeValue

} SMC_VALUE_UNION;

Programmer’s Guide 237

A P P E N D I X C Backward Compatibility

Monitor Client Library version 11.5 and later replaces several API
functions. The new API and callback functions provide improved features
and extensibility. Replaced API and callback functions have been
preserved within the library for backwards compatibility.

Obsolete and replacement functions
Table C-1 maps obsolete Monitor Client Library functions to their
replacement functions:

Table C-1: Obsolete functions and replacement functions

Topic Page
Obsolete and replacement functions 237

New functions, as Adaptive Server version 11.5 238

Rules for functions and callbacks compatibility 238

Obsolete Replacement

smc_change_error_handler smc_connect_props

smc_connect smc_connect_alloc

smc_connect_props

smc_connect_ex

smc_create_alarm smc_create_alarm_ex

smc_disconnect smc_close

smc_connect_drop

smc_refresh smc_refresh_ex

New functions, as Adaptive Server version 11.5

238 Monitor Client Library

The most significant syntactic difference between the obsolete and
replacement functions is the callback function parameter. In earlier versions,
SMC_CALLBACK, SMC_ALARM_CALLBACK, and SMC_ERR_CALLBACK
were used to specify a callback function. These callback function types are
have been replaced by SMC_GEN_CALLBACK.

Note The refresh function, smc_refresh_ex, does not use any callback
function, unlike the obsolete smc_refresh.

In addition to changing the callback function types, smc_connect and
smc_disconnect have been replaced by a set of functions that allow for greater
flexibility and control.

New functions, as Adaptive Server version 11.5
Table C-2 lists the functions.

Table C-2: New functions

Note Newer functions cannot be used with obsolete functions.

Rules for functions and callbacks compatibility
Use the following rules to decide which functions and callbacks can be used
together:

• If you are using any or replacement functions, do not use obsolete
functions.

smc_create_playback_session

smc_get_command_info

smc_initiate_playback

smc_terminate_playback

smc_terminate_recording

APPENDIX C Backward Compatibility

Programmer’s Guide 239

• If you are using obsolete functions, use the obsolete error callback
function types.

• If you are using replacement or new functions, use the version 11.1 error
callback function types.

• You can use unchanged functions with all other types of functions.

Rules for functions and callbacks compatibility

240 Monitor Client Library

Programmer’s Guide 241

A P P E N D I X D Troubleshooting Information
and Error Messages

Troubleshooting

Confusing messages from Adaptive Server
If you create a view that requires information from a database that needs
to be recovered, you get error messages from Adaptive Server rather than
a concise error message from Monitor Client Library.

View refreshes fail
• If you try to refresh a view at the same time as someone creates a

database, the refresh may fail.

• A refresh for a view may fail if one or more databases on Adaptive
Server are in single-user mode.

Negative numbers as object IDs
If you create a view using the SMC_NAME_OBJ_ID data item, you
might see negative numbers as object IDs. Negative object IDs are an
accurate reporting of IDs as assigned by Adaptive Server.

Topic Page
Troubleshooting 241

Error messages 242

Error messages

242 Monitor Client Library

Monitor Server reports on all activity, including activity on temporary tables
that Adaptive Server creates to perform a complex query. The object IDs that
Adaptive Server assigns to temporary tables can be positive or negative. The
object ID that was assigned by Adaptive Server is reported.

In views that show SMC_NAME_OBJ_NAME, the string **TempObject** is
reported for temporary tables.

Error messages
Monitor Client Library is an Open Server application that uses the Open Client
Library to communicate with Adaptive Server and Monitor Server. Any of
these components can detect and report errors conditions. Monitor Client
Library also detects and reports error conditions, which it logs or reports or
both to clients.

The following building, linking, and compiling error messages may be
reported. They are listed here in alphabetical order.

Communication failure: check if server is running
While running testmon.exe, one of the following conditions caused the error to
be reported:

• Server names are incorrect in example.h.

• sql.ini file is missing.

• sql.ini file has incorrect network connection information.

• Adaptive Server is not running.

• Historical Server is not running.

• User name is incorrectly set in example.h.

• Password for the user name is incorrectly set in example.h.

APPENDIX D Troubleshooting Information and Error Messages

Programmer’s Guide 243

Configuration failure: possibly missing interfaces file or bad login
parameters

While running testmon.exe, one of the following conditions caused the error to
be reported:

• Server names are incorrect in example.h.

• sql.ini file is missing.

• sql.ini file has incorrect network connection information.

• Adaptive Server is not running.

• Historical Server is not running.

• User name is incorrectly set in example.h.

• Password for the user name is incorrectly set in example.h.

Don’t know how to build example.h
While building testmon.exe, one of the following conditions caused the
compile error to be reported:

• Project must rebuild all dependencies.

• Project’s include file path needs the location of the file names.

• Default location would be %SYBASE%\OCS-15_0\INCLUDE and
%SYBASE%\OCS-15_0\SAMPLE\MONCLT\TESTMON.

error L2029: ‘SMC_CONNECT’ : unresolved external
While building testmon.exe, the following condition caused the link error to be
reported:

• smcapi32.lib must be included as one of the libraries in which to link. It is
located by default in %SYBASE%\OCS-15_0\LIB.

error L2029: ‘SMC_CREATE_VIEW’ : unresolved external
While building testmon.exe, the following condition caused the link error to be
reported:

Error messages

244 Monitor Client Library

• Include smcapi32.lib as one of the libraries in which to link. It is located
by default in %SYBASE%\OCS-15_0\LIB.

fatal error C1083: Cannot open include file: ‘cstypes.h’: No such file
or directory

While building testmon.exe, one of the following conditions caused the
compile error to be reported:

• Project must rebuild all dependencies.

• Project’s include file path needs the location of the file names.

• Default location would be %SYBASE%\OCS-15_0\INCLUDE and
%SYBASE%\OCS-15_0\SAMPLE\MONCLT\TESTMON.

fatal error C1083: Cannot open include file: ‘mcpublic.h’: No such
file or directory

While building testmon.exe, the following condition caused the compile error
to be reported:

• Project’s include path for the preprocessor must be edited to the correct
setting. It should include %SYBASE%\OCS-15_0\INCLUDE.

LINK: fatal error L4051: smcapi32.lib : cannot find library
While building testmon.exe, the following condition caused the link error to be
reported:

• The project’s Library File’s path must include the location of smcapi32.lib,
which is assumed to be in %SYBASE%\OCS-15_0\LIB.

Programmer’s Guide 245

Symbols
::= (BNF notation)

in SQL statements xvii
, (comma)

in SQL statements xvii
{} (curly braces)

in SQL statements xvii
() (parentheses)

in SQL statements xvii
[] (square brackets)

in SQL statements xvii

A
Adaptive Server Monitor

architecture 2
components 2
definition 1

alarm callback syntax 142
alarms

adding 125
callback functions 11, 128
creating 139
removing 125
retrieve information 161
setting 11

allocating
connection structure 6

application programming interface 2
architecture

Adaptive Server Monitor 2
average

statistical types 8
average statistic type

definition of 9

B
Backus Naur Form (BNF) notation xvi, xvii
BNF notation in SQL statements xvi, xvii
brackets. See square brackets []

C
calculation

statistical type 8
callback function 11, 128
cancelling

recording session 173
case sensitivity

in SQL xviii
client connection 6
comma (,)

in SQL statements xvii
command info types 128, 163
command information types 128
command structure

deallocating 12
commands

isql 4
compiling 175

UNIX 176
Windows 178

configuring
Adaptive Server 3
Adaptive Server Monitor 2
Monitor Server 3

connecting
server 6

connection
closing 125
creating 125, 131
deallocating 125, 132
establishing 125, 133
initialize playback 125

Index

Index

246 Monitor Client Library

Monitor 131
properties 134, 138
reopening 13
reusing 13
setting properties 125

connection structure
allocating 6
deallocating 13

connections
summaries 46

conventions
See also syntax
Transact-SQL syntax xvi
used in the Reference Manual xvi

creating
filters 10

curly braces ({}) in SQL statements xvii

D
data item

defined 43
definition 7

data item statistical type 8
data item type

returning 125
data items

list of 46
retrieving 126
SMC_NAME_ACT_STP_DB_ID 48
SMC_NAME_ACT_STP_DB_NAME 49
SMC_NAME_ACT_STP_ID 49
SMC_NAME_ACT_STP_NAME 50
SMC_NAME_ACT_STP_OWNER_NAME 51
SMC_NAME_APP_EXECUTION_CLASS 52
SMC_NAME_APPLICATION_NAME 51
SMC_NAME_BLOCKING_SPID 53
SMC_NAME_CONNECT_TIME 54
SMC_NAME_CPU_BUSY_PCT 54
SMC_NAME_CPU_PCT 54
SMC_NAME_CPU_TIME 55
SMC_NAME_CPU_YIELD 56
SMC_NAME_CUR_APP_NAME 56
SMC_NAME_CUR_ENGINE 56
SMC_NAME_CUR_EXECUTION_CLASS 57

SMC_NAME_CUR_PROC_STATE 57
SMC_NAME_CUR_STMT_ACT_STP_DB_ID

58
SMC_NAME_CUR_STMT_ACT_STP_DB_NAM

E 59
SMC_NAME_CUR_STMT_ACT_STP_ID 59
SMC_NAME_CUR_STMT_ACT_STP_NAME

60
SMC_NAME_CUR_STMT_ACT_STP_OWNER_

NAME 60
SMC_NAME_CUR_STMT_ACT_STP_TEXT 61
SMC_NAME_CUR_STMT_BATCH_ID 61
SMC_NAME_CUR_STMT_BATCH_TEXT 62
SMC_NAME_CUR_STMT_BATCH_TEXT_ENA

BLED 62
SMC_NAME_CUR_STMT_CONTEXT_ID 63
SMC_NAME_CUR_STMT_CPU_TIME 63
SMC_NAME_CUR_STMT_ELAPSED_TIME

64
SMC_NAME_CUR_STMT_LINE_NUM 64
SMC_NAME_CUR_STMT_LOCKS_GRANTED_I

MMED 65
SMC_NAME_DATA_CACHE_HIT_PCT 71
SMC_NAME_DATA_CACHE_ID 71
SMC_NAME_DATA_CACHE_NAME 74
SMC_NAME_LOCK_RESULT_SUMMARY 86
SMC_NAME_LOCK_STATUS 86
SMC_NAME_LOCK_STATUS_CNT 87
SMC_NAME_LOCKS_BEING_BLOCKED_CNT

88
SMC_NAME_OBJ_NAME 101
SMC_NAME_OWNER_NAME 102
SMC_NAME_PROC_STATE_CNT 108

data refresh 12, 171
deallocating

connection structure 12, 13
detail

specifying in view 43
details

server-wide data 44

E
empty rows 45

views in 45

Index

Programmer’s Guide 247

error handler 127
error handling 126
error messages

callback function 128
Monitor Historical Server 242

error notification 161

F
filters

adding 125, 143
creating 10
removing 125, 158
types 10

functions
summary of 126
using threads 126

G
graphical user interface 2

H
Historical Server 2, 3

cancel session 173
isql interface to 4
Monitor Client Library and 4
playback in 4

I
inactive rows 45
information types 128, 163

callback data 128
isql

Historical Sever and 4

L
linking 175

UNIX 176
Windows 179

M
Monitor Client Library 2

definition of 1
Historical Server and 4
playback 4
properties 137
relationship to Monitor Server 3

Monitor Historical Server
connection 125
definition of 2
messages 242
summaries 46

Monitor Server 2
Monitor Viewer 2

O
Open Server 2

P
parentheses ()

in SQL statements xvii
performance 3
performance data 12
playback 4

conclude definition 126
conclude session 172
creating a session 146
ending a session 126
initializing 125

program structure
closing connections 12
connecting to a server 6
creating filters 10
creating views 7
deallocating connections 13
setting alarms 11

properties

Index

248 Monitor Client Library

clearing 138
connection 138
retrieving 138
setting 138

R
rate

statistical types 8
recording

conclude definition 126
creating a session 152
initializing 125
initiating 126
initiating session 169

refresh data 12, 171
return values 127
row count

retrieving 126
rows

empty 45

S
sample

statistical types 8
sample applications 175

UNIX 178
Windows 180

servers
connecting to 6
logging into 7

server-wide data
details of 44

session
cancelling 173
creating 125
statistical types 8

setting
alarms 11

shared memory 3
smc_close 125, 129
smc_connect_alloc 125, 130

see also connection structure

smc_connect_drop 125, 132
smc_connect_ex 7, 13, 125, 133
smc_connect_props 6, 125, 134
smc_create_alarm 11
smc_create_alarm_ex 125, 139
smc_create_filter 10, 125, 143
smc_create_playback_session 125, 146
smc_create_recording_session 125, 152
smc_create_view 9, 125, 155
smc_drop_alarm 125, 157
smc_drop_filter 125, 158
smc_drop_view 125, 159
smc_get_command_info 125, 161
smc_get_dataitem_type 125, 163
smc_get_dataitem_value 12, 126, 164
smc_get_row_count 12, 126, 166
smc_get_version_string 126, 167
smc_initiate_playback 126
smc_initiate_recording 126, 169
SMC_NAME_ACT_STP_DB_ID 48
SMC_NAME_ACT_STP_DB_NAME 49
SMC_NAME_ACT_STP_ID 49
SMC_NAME_ACT_STP_NAME 50
SMC_NAME_ACT_STP_OWNER_NAME 51
SMC_NAME_APP_EXECUTION_CLASS 52
SMC_NAME_APPLICATION_NAME 51
SMC_NAME_BLOCKING_SPID 53
SMC_NAME_CONNECT_TIME 54
SMC_NAME_CPU_BUSY_PCT 54
SMC_NAME_CPU_PCT 54
SMC_NAME_CPU_TIME 55
SMC_NAME_CPU_YIELD 56
SMC_NAME_CUR_APP_NAME 56
SMC_NAME_CUR_ENGINE 56
SMC_NAME_CUR_EXECUTION_CLASS 57
SMC_NAME_CUR_PROC_STATE 57
SMC_NAME_CUR_STMT_ACT_STP_DB_ID 58
SMC_NAME_CUR_STMT_ACT_STP_DB_NAME

59
SMC_NAME_CUR_STMT_ACT_STP_ID 59
SMC_NAME_CUR_STMT_ACT_STP_NAME 60
SMC_NAME_CUR_STMT_ACT_STP_OWNER_NA

ME 60
SMC_NAME_CUR_STMT_ACT_STP_TEXT 61
SMC_NAME_CUR_STMT_BATCH_ID 61
SMC_NAME_CUR_STMT_BATCH_TEXT 62

Index

Programmer’s Guide 249

SMC_NAME_CUR_STMT_BATCH_TEXT_ENAB
LED 62

SMC_NAME_CUR_STMT_CONTEXT_ID 63
SMC_NAME_CUR_STMT_CPU_TIME 63
SMC_NAME_CUR_STMT_ELAPSED_TIME 64
SMC_NAME_CUR_STMT_LINE_NUM 64
SMC_NAME_CUR_STMT_LOCKS_GRANTED_I

MMED 65
SMC_NAME_DATA_CACHE_HIT_PCT 71
SMC_NAME_DATA_CACHE_ID 71
SMC_NAME_DATA_CACHE_NAME 74
SMC_NAME_LOCK_RESULT_SUMMARY 86
SMC_NAME_LOCK_STATUS 86
SMC_NAME_LOCK_STATUS_CNT 87
SMC_NAME_LOCKS_BEING_BLOCKED_CNT

88
SMC_NAME_OBJ_NAME 101
SMC_NAME_OWNER_NAME 102
SMC_NAME_PROC_STATE_CNT 108
smc_refresh_ex 12, 126, 171
SMC_STAT_AVG_SESSION

definition of 9
SMC_STAT_RATE_SAMPLE

definition of 8
SMC_STAT_RATE_SESSION

definition of 9
SMC_STAT_VALUE_SAMPLE

definition of 8
SMC_STAT_VALUE_SESSION

definition of 8
smc_terminate_playback 126, 172
smc_terminate_recording 126, 173
specifying

detail in view 43
square brackets []

in SQL statements xvii
statistical type 8
structures

allocating a connection structure 6
summaries

connection 46
Sybase Central 3
symbols

in SQL statements xvi, xvii
syntax conventions, Transact-SQL xvi

T
terminating playback 172
testhist 175
testmon 175
threads 126
triggering

alarms 11

V
value

statistical type 8
version number 126
view

contents 44
description 9

views 7
alarms 11
amount of detail 43
defining 125
definition 7
dropping 125, 159
empty rows 45
filters on views 10
monitor summaries 46
retrieving data 126
sampling data 171

Index

250 Monitor Client Library

	Monitor Client Library Programmer’s Guide
	About This Book
	Audience
	How to use this book
	Related documents
	Other sources of information
	Sybase certifications on the Web
	Finding the latest information on product certifications
	Creating a personalized view of the Sybase Web site (including support pages)
	Sybase EBFs and software maintenance
	Finding the latest information on EBFs and software maintenance
	Conventions
	Table 1: Font and syntax conventions for this manual
	Accessibility features
	If you need help

	CHAPTER 1 Getting Started with Monitor Client Library
	Overview
	What is Adaptive Server Enterprise Monitor?
	Adaptive Server Enterprise Monitor components
	Adaptive Server Enterprise Monitor architecture
	Figure 1-1: Adaptive Server Enterprise Monitor architecture

	Writing a basic Monitor Client Library program
	Application logic flow
	Step 1: Defining error handling
	Step 2: Connecting to a server
	Allocating a connection structure
	Setting connection structure properties
	Required connection properties
	Connecting to a server

	Step 3: creating a view
	Data items
	Statistical types
	Creating views for a connection

	Step 4: Creating filters
	Step 5: Setting alarms
	Step 6: Requesting performance data and process results
	Step 7: closing and deallocating connections
	Closing and deallocating connections
	Reopening connections

	Playing back recorded data

	A sample Monitor Client Library program
	Example program
	Code for connecting to a server
	Code for required connection properties
	Code for connecting to a server
	Code for creating a view
	Code for creating filters
	Code for setting alarms
	Code for requesting performance data and process results
	Code for closing and deallocating connections
	Code for defining error handling

	CHAPTER 2 Data Items and Statistical Types
	Overview
	Result and key data items
	Data items and views
	Table 2-1: Examples of data returned by views
	Rows with no data versus no rows in views
	Server-level status
	Combining data items
	Result and key combinations
	Connection summaries
	Current statement and application name data items

	Data item definitions
	Deciphering the names of data items
	SMC_NAME_ACT_STP_DB_ID
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_ACT_STP_DB_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_ACT_STP_ID
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_ACT_STP_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_ACT_STP_OWNER_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_APPLICATION_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_APP_EXECUTION_CLASS
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_BLOCKING_SPID
	Description
	Version Compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CONNECT_TIME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CPU_BUSY_PCT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CPU_PCT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CPU_TIME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CPU_YIELD
	Description
	Version compatibility
	Data item type
	Server level
	Required key
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_APP_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_ENGINE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_EXECUTION_CLASS
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_PROC_STATE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes
	Enum

	SMC_NAME_CUR_STMT_ACT_STP_DB_ID
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_ACT_STP_DB_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_ACT_STP_ID
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_ACT_STP_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_ACT_STP_OWNER_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_ACT_STP_TEXT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_BATCH_ID
	Description
	Version compatibility
	Data item type
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_BATCH_TEXT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_BATCH_TEXT_ENABLED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_CONTEXT_ID
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_CPU_TIME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes:

	SMC_NAME_CUR_STMT_ELAPSED_TIME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_LINE_NUM
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_LOCKS_GRANTED_IMMED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_LOCKS_GRANTED_WAITED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_LOCKS_NOT_GRANTED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_NUM
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_PAGE_IO
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_PAGE_LOGICAL_READ
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_PAGE_PHYSICAL_READ
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_PAGE_WRITE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_QUERY_PLAN_TEXT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_START_TIME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_TEXT_BYTE_OFFSET
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_CONTENTION
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_EFFICIENCY
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_HIT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_HIT_PCT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_ID
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_LARGE_IO_DENIED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_LARGE_IO_PERFORMED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_LARGE_IO_REQUESTED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_MISS
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_PREFETCH_EFFICIENCY
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_REUSE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_REUSE_DIRTY
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_REF_AND_REUSE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_SIZE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DB_ID
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_DB_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DEADLOCK_CNT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DEMAND_LOCK
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DEV_HIT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DEV_HIT_PCT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DEV_IO
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DEV_MISS
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DEV_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_DEV_READ
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DEV_WRITE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_ELAPSED_TIME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_ENGINE_NUM
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_HOST_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_KPID
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_LOCK_CNT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_LOCK_HIT_PCT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_LOCK_RESULT
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes
	Enum

	SMC_NAME_LOCK_RESULT_SUMMARY
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes
	Enum

	SMC_NAME_LOCK_STATUS
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes
	Enum

	SMC_NAME_LOCK_STATUS_CNT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_LOCK_TYPE
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes
	Enum

	SMC_NAME_LOCKS_BEING_BLOCKED_CNT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_LOCKS_GRANTED_IMMED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_LOCKS_GRANTED_WAITED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_LOCKS_NOT_GRANTED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_LOG_CONTENTION_PCT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_LOGIN_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_MEM_CODE_SIZE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_MEM_KERNEL_STRUCT_SIZE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_MEM_PAGE_CACHE_SIZE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_MEM_PROC_BUFFER
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_MEM_PROC_HEADER
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_MEM_SERVER_STRUCT_SIZE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_MOST_ACT_DEV_IO
	Description
	Version compatibility
	Server level
	Data item type
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_MOST_ACT_DEV_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_NET_BYTE_IO
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_NET_BYTES_RCVD
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_NET_BYTES_SENT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_NET_DEFAULT_PKT_SIZE
	Description
	Type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_NET_MAX_PKT_SIZE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_NET_PKT_SIZE_RCVD
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_NET_PKT_SIZE_SENT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_NET_PKTS_RCVD
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_NET_PKTS_SENT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_NUM_ENGINES
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_NUM_PROCESSES
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_OBJ_ID
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_OBJ_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_OBJ_TYPE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes
	Enum

	SMC_NAME_OWNER_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_PAGE_HIT_PCT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_PAGE_INDEX_LOGICAL_READ
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_PAGE_INDEX_PHYSICAL_READ
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_PAGE_IO
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_PAGE_LOGICAL_READ
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_PAGE_NUM
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_PAGE_PHYSICAL_READ
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_PAGE_WRITE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_PROC_STATE
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes
	Enum

	SMC_NAME_PROC_STATE_CNT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_SPID
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_SQL_SERVER_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_SQL_SERVER_VERSION
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_STP_CPU_TIME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_STP_ELAPSED_TIME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_STP_EXECUTION_CLASS
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_STP_HIT_PCT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_STP_LINE_NUM
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_STP_LINE_TEXT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_STP_LOGICAL_READ
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_STP_NUM_TIMES_EXECUTED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_STP_PHYSICAL_READ
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_STP_STMT_NUM
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_THREAD_EXCEEDED_MAX
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_THREAD_EXCEEDED_MAX_PCT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_THREAD_MAX_USED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_TIME_WAITED_ON_LOCK
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_TIMESTAMP
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_TIMESTAMP_DATIM
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_DELETE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_DELETE_DEFERRED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_DELETE_DIRECT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_INSERT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_INSERT_CLUSTERED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_INSERT_HEAP
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_SELECT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_UPDATE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_UPDATE_DEFERRED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_UPDATE_DIRECT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_UPDATE_EXPENSIVE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_UPDATE_IN_PLACE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_UPDATE_NOT_IN_PLACE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	CHAPTER 3 Monitor Client Library Functions
	Library functions
	Table 3-1: Monitor Client Library functions

	Threads
	Error handling
	Table 3-2: Return values

	Error handler
	Callback function
	Accessing callback data
	Table 3-3: Data available for alarm callbacks
	Table 3-4: Data available for error callbacks

	smc_close
	Valid server modes
	Errors

	smc_connect_alloc
	Valid server modes
	Errors

	smc_connect_drop
	Valid server modes
	Errors

	smc_connect_ex
	Valid server modes
	Errors

	smc_connect_props
	Table 3-5: Monitor Client Library connection properties
	Properties
	Valid server modes
	Errors

	smc_create_alarm_ex
	Valid server modes
	Errors
	Callback parameters

	smc_create_filter
	Valid server modes
	Errors

	smc_create_playback_session
	Valid server modes
	Errors

	smc_create_recording_session
	Valid server modes
	Errors

	smc_create_view
	Valid server modes
	Errors

	smc_drop_alarm
	Valid server modes
	Errors

	smc_drop_filter
	Valid server modes
	Errors

	smc_drop_view
	Valid server modes
	Error

	smc_get_command_info
	Table 3-6: Monitor Client Library command information types
	Valid server modes
	Errors

	smc_get_dataitem_type
	smc_get_dataitem_value
	Errors

	smc_get_row_count
	Valid server modes
	Error

	smc_get_version_string
	smc_initiate_playback
	Valid server modes
	Errors

	smc_initiate_recording
	Valid server modes
	Errors

	smc_refresh_ex
	Valid server modes
	Errors

	smc_terminate_playback
	Valid server modes
	Errors

	smc_terminate_recording
	Valid server modes
	Errors

	CHAPTER 4 Building a Monitor Client Library Application
	Building on UNIX platforms
	Compiling the application
	Linking the application
	Running the application
	Building the sample applications

	Building on Windows platforms
	Compiling the application
	Linking the application
	Running the application
	Building the sample applications

	CHAPTER 5 Monitor Client Library Configuration Instructions
	Loading Monitor Client Library
	Using InstallShield

	Results of the load
	Confirming your login account and permissions
	Modifying the interfaces file
	Setting up the user environment
	Setting the SYBASE environment variable
	Overriding the default location of the interfaces file

	Using Monitor Client Library
	Notes

	APPENDIX A Examples of Views
	Cache performance summary
	Current statement summary
	Database object lock status
	Database object page I/O
	Data cache activity for individual caches
	Data cache statistics for session
	Data cache statistics for sample interval
	Device I/O for session
	Device I/O for sample interval
	Device I/O performance summary
	Engine activity
	Lock performance summary
	Network activity for session
	Network activity for sample interval
	Network performance summary
	Procedure cache statistics for session
	Procedure cache statistics for sample interval
	Procedure page I/O
	Process activity
	Process database object page I/O
	Process detail for locks
	Process detail page I/O
	Process locks
	Process page I/O
	Process state summary
	Process stored procedure page I/O
	Server performance summary
	Stored procedure activity
	Transaction activity

	APPENDIX B Datatypes and Structures
	Summary of datatypes
	Table B-1: Summary of datatypes

	Enum: SMC_ALARM_ACTION_TYPE
	Table B-2: Alarm action type

	Enum: SMC_CLOSE_TYPE
	Table B-3: Close type

	Enum: SMC_DATAITEM_NAME
	Enum: SMC_DATAITEM_STATTYPE
	Table B-4: Data item statistical type

	Structure: SMC_DATAITEM_STRUCT
	Enum: SMC_DATAITEM_TYPE
	Table B-5: Data item type

	Enum: SMC_ERR_SEVERITY
	Table B-6: Error severity

	Enum: SMC_FILTER_TYPE
	Table B-7: Filter type

	Enum: SMC_HS_ESTIM_OPT
	Table B-8: Historical Server error action

	Enum: SMC_HS_MISSDATA_OPT
	Table B-9: Historical Server missing data option

	Enum: SMC_HS_PLAYBACK_OPT
	Table B-10: Historical Server protection level

	Enum: SMC_HS_SESS_DELETE_OPT
	Table B-11: Historical Server file deletion option

	Enum: SMC_HS_SESS_ERR_OPT
	Table B-12: Historical Server error option

	Enum: SMC_HS_SESS_PROT_LEVEL
	Table B-13: Historical Server protection level

	Enum: SMC_HS_SESS_SCRIPT_OPT
	Table B-14: Historical Server script option

	Enum: SMC_HS_TARGET_OPT
	Table B-15: Historical Server script option

	Enum: SMC_HS_TARGET_OPT
	Table B-16: Historical Server playback target option

	Enum: SMC_INFO_TYPE
	Table B-17: Information type

	Enum: SMC_LOCK_RESULT
	Table B-18: Lock result type

	Enum: SMC_LOCK_RESULT_SUMMARY
	Table B-19: Lock result summary type

	Enum: SMC_LOCK_STATUS
	Table B-20: Lock status type

	Enum: SMC_LOCK_TYPE
	Table B-21: Lock type

	Enum: SMC_OBJ_TYPE
	Table B-22: Object type

	Enum: SMC_PROC_STATE
	Table B-23: Process state

	Enum: SMC_PROP_ACTION
	Table B-24: Connection property action

	Enum: SMC_PROP_TYPE
	Table B-25: Connection property

	Enum: SMC_RETURN_CODE
	Table B-26: Return codes

	Enum: SMC_SERVER_MODE
	Table B-27: Server mode type

	Enum: SMC_SOURCE
	Table B-28: Error source

	Union: SMC_VALUE_UNION

	APPENDIX C Backward Compatibility
	Obsolete and replacement functions
	Table C-1: Obsolete functions and replacement functions

	New functions, as Adaptive Server version 11.5
	Table C-2: New functions

	Rules for functions and callbacks compatibility

	APPENDIX D Troubleshooting Information and Error Messages
	Troubleshooting
	Confusing messages from Adaptive Server
	View refreshes fail
	Negative numbers as object IDs

	Error messages
	Communication failure: check if server is running
	Configuration failure: possibly missing interfaces file or bad login parameters
	Don’t know how to build example.h
	error L2029: ‘SMC_CONNECT’ : unresolved external
	error L2029: ‘SMC_CREATE_VIEW’ : unresolved external
	fatal error C1083: Cannot open include file: ‘cstypes.h’: No such file or directory
	fatal error C1083: Cannot open include file: ‘mcpublic.h’: No such file or directory
	LINK: fatal error L4051: smcapi32.lib : cannot find library

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

